
Representing Data Collections
for Analysis and Transformation
Tommy McMichen
March 8, 2024

2

A Brief History of Compilation.

3

A Brief History of Compilation.

Motivation.
The problem with compilers.

4

A Brief History of Compilation.

Motivation.
The problem with compilers.

How do we solve it?

5

A Brief History of Compilation.

Motivation.
The problem with compilers.

How do we solve it?

Feel free toask questions at any time!

6

Compilation.
What is it?

7

Introduction
What is Compilation?

Compiler ExecutableProgram

8

Introduction
What is a Pragmatic Definition of Compilation?

CompilerDeveloper Program
Impl. Executable

Program

9

Compilers.
How do they work?

CompilerDeveloper Program
Impl. Executable

Program

10

History
Manual Compilation

Assembly AssemblerDeveloper Executable

Instructions

Registers

Order

1’s and 0’s⇒

11

AssemblyPortable
Assembly

History
The Compiler as a Translator

CompilerDeveloper

Operations

Variables

Control Flow

12

AssemblyPortable
Assembly

History
The Compiler as a Translator

CompilerDeveloper

Operations

Variables

Control Flow

Instructions

Registers

Order

⇒

13

Operations ⇒ Machine Instructions

History
The Compiler as a Translator

14

Operations ⇒ Machine Instructions

Instruction Selection

History
The Compiler as a Translator

i = i + 1 r1 <- add r1, #1

15

Unlimited # of Variables ⇒ Limited Set of Registers

History
The Compiler as a Translator

16

Unlimited # of Variables ⇒ Limited Set of Registers

Register Allocation

History
The Compiler as a Translator

a = 1
b = 2
c = a + b

r1 <- #1
r2 <- #2
r3 <- add r1, r2

17

Control Flow ⇒ Program Order

History
The Compiler as a Translator

18

if ? {...}
else {...}
return

 if ? goto true
 ...
 goto continue
true: ...
done: return

Control Flow ⇒ Program Order

Linearization

History
The Compiler as a Translator

19

History
Machine Capabilities Improve

ExecutablePortable
Assembly CompilerDeveloper

New capabilities

20

History
…and Users want to Fully Utilize Machines

Portable
Assembly CompilerDeveloper

Hey! I want to
use all of my

machine!

New capabilities

Executable

User

21

History
So Developers Oblige.

Optimized
Portable
Assembly

CompilerDeveloper

Manual
Optimizations

Executable

22

History
Machine Capabilities are a Moving Target

Optimized
Portable
Assembly

CompilerDeveloper

New capabilities

Executable

Hey! I want to
use all of my

machine!

User

23

History
…so Developers oblige, again…

Optimized
Optimized
Portable
Assembly

CompilerDeveloper

Manual
Optimizations

Executable

24

History
…but optimizations are not necessarily composable.

Optimized
Optimized?

Portable
Assembly

CompilerDeveloper Executable

25

History
…and Manual Optimizations make Programs
Unmaintainable!

Optimized
Optimized?

Portable
Assembly

CompilerDeveloper

Today’s optimized program becomes
tomorrow’s unmaintainable program

Executable

26

Today’s optimized program becomes
tomorrow’s unmaintainable program

History
…and Manual Optimizations increase Engineering Costs!

Maintenance is the true cost of software.
Bug fixes, security patches, platform updates, etc.

Optimized
Optimized?

Portable
Assembly

CompilerDeveloper Executable

27

History
How do we fix this?

Portable
AssemblyDeveloper

Have the compiler perform
optimizations

ExecutableOptimizing
Compiler

28

Portable
Assembly

History
The Compiler as an Optimizer

Optimizer
Optimized
Portable
Assembly

Translator

29

Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3

30

Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3

i = i + 1
i = i + 1 i = i + 2

Instruction Combining

31

Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3

i = i + 1
i = i + 1 i = i + 2

x = ...
y = x + 2
return x

x = ...
return x

Instruction Combining

Dead Code Elimination

32

Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3

i = i + 1
i = i + 1 i = i + 2

x = ...
y = x + 2
return x

x = ...
return x

Instruction Combining

Dead Code Elimination There are 100s of

optimization passes in
LLVM!

33

History
Optimizations Make Software Engineering Easier!

Dev’s Code
a = ALICE_NUM
b = BOB_NUM
c = a + b
d = c + 1

Single point of control

34

History
Optimizations Make Software Engineering Easier!

Single point of control

Dev’s Code
a = ALICE_NUM
b = BOB_NUM
c = a + b
d = c + 1

a = 1
b = 2
c = a + b
d = c + 1

c = 3
d = c + 1 d = 4

35

History
The Compiler as an Engineering Nightmare

C
Program

x86
Assembly

36

History
The Compiler as an Engineering Nightmare

C
Program

C++
Program

C#
Program

Java
Program

x86
Assembly

… Pn

37

History
The Compiler as an Engineering Nightmare

C
Program

C++
Program

C#
Program

Java
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

… Pn … Am

38

History
The Compiler as an Engineering Nightmare

C
Program

C++
Program

C#
Program

Java
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

… Pn … Am

We need to develop n·m
compilers!

39

General-Purpose
IR

History
The Compiler as a Bridge

C
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

C++
Program

C#
Program

Java
Program

… Pn … Am

Only need n front-ends

40

General-Purpose
IR

History
The Compiler as a Bridge

C
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

C++
Program

C#
Program

Java
Program

… Pn … Am

Only need m back-ends

Only need n front-ends

41

General-Purpose
IR

History
The Compiler as a Bridge

C
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

C++
Program

C#
Program

Java
Program

… Pn … Am

Only need m back-ends

Only need n front-ends

Common optimizations
can be shared

42

Back
End

Back
End

Front
End

Front
End

History
What is a Modern Definition of Compilation?

Front
EndDeveloper Program

Impl.

Executable Back
End IR

IR

Middle
End

Program

43

So, what’s the modern problem?
Premature Lowering.

44

So, what’s the modern problem?
Premature Lowering.

45

Lowering:
Lowering is the destruction of high-level
information by the instantiation of
low-level decisions.

46

Motivation
What is Lowering?

Developer Program
Impl.

Executable IR

IR

Middle
End

Program
Decreasing degrees of freedom

Decreasing guarantees

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

47

Back
End

Back
End

Motivation
What Kinds of Lowerings Exist?

Developer Program
Impl.

Executable IR

IR

Middle
End

Program

Language-specific lowering

Architecture-specific lowering General-purpose lowering

Problem-specific lowering

Front
End

Front
End

Front
End

Back
End

48

Motivation
What is Premature Lowering?

Developer Program
Impl.

Executable IR

IR

Middle
End

Program
A decision made early.

Blocks a beneficial decision later.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

49

An instance of premature lowering:
Data Collections.

50

Data Collection:
A Logical Organization of Data.

51

Motivation
Data Collections: Logical Organization of Data

List

52

Motivation
Data Collections: Logical Organization of Data

List

Dense Array

Sparse Array

53

Motivation
Data Collections: Logical Organization of Data

List

Set

Map

Dense Array

Sparse Array

54

Motivation
Data Collections: Logical Organization of Data

List

Set

Map

Tree

Dense Array

Sparse Array

55

Motivation
Data Collections: Logical Organization of Data

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

56

Motivation
How are Collections Lowered?

Developer Program
Impl.

Executable IR

IR

Middle
End

Program Developers manually lower
collections here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

57

Motivation
How are Collections Lowered?

Developer Program
Impl.

Executable IR

IR

Middle
End

Program Modern languages
lower collections here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

58

Motivation
Collections are lowered to their in-memory layout

Collections
Lowering

Memory Layout

Memory Block(s)

Untyped

Data

Organization

Typed

59

Motivation
Compilers are forced to glean conservative information

Collections
Analysis

Memory Layout

Memory Block(s)

Untyped

Data

Organization

Typed

?

60

Motivation
Compilers are forced to glean conservative information

Collections
Analysis

Memory Layout

Memory Block(s)

Untyped

Data

Organization

Typed

?

Useful information has been destroyed!

61

Motivation
Example: Hash table

Insert

／

62

Motivation
Example: Hash table

Insert

／ ⇒
size < load factor

63

Motivation
Example: Hash table

Insert

／ ⇒
size < load factor

size ≥ load factor? reallocate and rehash

⇒

／ ／

64

Motivation
Example: Hash table

Insert

／ ⇒
size < load factor

／ ／

Unrelated elements are moved!

65

Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

66

Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

67

Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

No production compiler can propagate 10 to the
print statement

68

Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

Simple operations → complex memory behavior.

69

Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

!=

Complex memory behavior blocks optimizations!

70

Motivations
Constant Folding Rarely Succeeds with Memory Operations

Figure: Breakdown of attempts to perform constant folding.

71

Motivation
Collections are Prematurely Lowered.

Developer Program
Impl.

Executable IR

IR

Middle
End

Program
Collections being lowered here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

72

Motivation
Collections are Prematurely Lowered.

Developer Program
Impl.

Executable IR

IR

Middle
End

Program

Blocks optimizations here.

Collections being lowered here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

73

Library
Implementation

Insights
Stems from premature lowering to fixed implementations
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IRSource
Program

Linking

…

74

Library
Implementation

Insights
Stems from premature lowering to fixed implementations
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IR

malloc
realloc
load
store
gep

Source
Program

Linking

…

The compiler is left with low-level memory
operations

75

Proposal
Progressively lower to MEMOIR before library
implementation

Source
Program MEMOIR Collections LLVM IR

Linking

Memory-Centric
Optimizations

Library
Impl.

…

76

Proposal
Implement Memory Optimizations within the Compiler for
Easy, Automatic Reuse

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Library
Impl.

…

77

MEMOIR
The first SSA IR for data
collections.

78

Goals
Representing Data Collections in the Compiler

General-purpose

79

Amenable to Analysis

Goals
Representing Data Collections in the Compiler

General-purpose

80

Amenable to Analysis

Goals
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation

81

Amenable to Analysis

Goals
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation

82

Representation
General-Purpose Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

83

Representation
General-Purpose Data Collections

List

Set

Map

Dense Array

Sparse Array

Tree

Graph

Sequential

84

Representation
General-Purpose Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative

85

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

Representation
Most accesses to heap memory is for structured data

86

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

Representation
Most accesses to heap memory is for structured data

87

Representation
General-Purpose Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative

88

id→ [2 ✕ id]

id → {id}

Tree

Representation
General-Purpose Data Collections

List

Set

Map
Graph

Dense Array

Sparse Array

Sequential Associative

89

id→ [2 ✕ id]

ID → {ID}

Tree

Representation
General-Purpose Data Collections

List

Set

Map
Graph

Dense Array

Sparse Array

Sequential Associative Composition

90

Representation
Decoupling Data from its Logical Organization

Example: Linked List

91

Representation
Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

92

Representation
Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

Index-value mapping:

93

Representation
Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

Index-value mapping:

Abstract away the memory used to logically organize the
collection.

94

Representation
Abstraction of Logical Organization

Associative
Uniqueness in index space

Sequential
Contiguous in index space

Map keys to values Map indices to values

95

Representation
Abstraction of Logical Organization

Associative
Uniqueness in index space

Sequential
Contiguous in index space⊃

Additional properties of index space

96

Representation
Takeaway

General-purpose

Multiple layouts → single abstraction

Structure and properties of data organization

+

=

97

Amenable to Analysis

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation

98

Amenable to Analysis

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation

99

Analysis
Enabling Analysis with
Intermediate Representations

100

Analysis
Impact of Program Representation on Analysis

Program
a = 1
b = 2
c = a + b
b = c * 2
a = b - c

a

b

c

1

2

+*2

-
⇒

Data Flow Graph

101

b

c

2

+*2

Analysis
Impact of Program Representation on Analysis

Program
a = 1
b = 2
c = a + b
b = c * 2
a = b - c

a1

-
⇒

Data Flow Graph

a can be defined by
multiple operations

102

2

b

c

*2

Analysis
Impact of Program Representation on Analysis

Program
a = 1
b = 2
c = a + b
b = c * 2
a = b - c

⇒

Data Flow Graph

+

a1

-

Which assignment to a is used
by the + operation?

103

Intermediate representations (IR) simplify
analysis and transformation.

Analysis
Enabling Analysis with IR Design

104

Analysis
Enabling Analysis with IR Design

Example: Static Single Assignment (SSA)

Intermediate representations (IR) simplify
analysis and transformation.

105

Each variable in program has a single definition

Analysis
Static Single Assignment (SSA)

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

106

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

Analysis
Static Single Assignment (SSA)

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

Each variable use has referential transparency:
The variable can be replaced with its definition.

107

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

Analysis
Static Single Assignment (SSA)

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

We can easily resolve the ambiguous use of
a by the + operation now!

108

Analysis
Example: Constant Propagation

With referential transparency, constant
propagation becomes trivial

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

⇒

109

Analysis
Example: Constant Propagation

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

With referential transparency, constant
propagation becomes trivial

110

Analysis
Example: Constant Propagation

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

⇒

a = 1
b = 2
c = 1 + 2
b’ = c * 2
a’ = b’ - c

With referential transparency, constant
propagation becomes trivial

111

MEMOIR
Data Collections

An SSA collection variable is the only reference to that
collection.

112

SSA collections are immutable for their static lifetime.
A collection variable is a collection

MEMOIR
Data Collections

An SSA collection variable is the only reference to that
collection.

113

Collection-Aware

MEMOIR
Element-Level Operations

Conventional

allocate(# of bytes) allocate(# of elements)

Reason about elements instead of bytes.

114

Collection-Aware

MEMOIR
Element-Level Operations

Conventional

allocate(# of bytes)

reallocate(pointer, # of bytes)

allocate(# of elements)

insert(collection, index, ...)

remove(collection, index)

Whether a collection is growing or shrinking is explicit.

115

Collection-Aware

MEMOIR
Element-Level Operations

Conventional

allocate(# of bytes)

reallocate(pointer, # of bytes)

access(pointer, offset in bytes)

allocate(# of elements)

insert(collection, index)

remove(collection, index)

access(collection, index)

Access explicitly references collection and element.

116

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Where scalar analysis and transformation fails.

LLVM IR, etc.

Constant Scalar
Propagation

117

... table = ...;

table[0] = 10;

table[1] = 20;

print(10);

Analysis
Element-Level analysis and transformation can prevail.

Constant Element
Propagation

LLVM IR, etc. MEMOIR

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Constant Scalar
Propagation

118

Assoc<int,int> table = ...;... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar
Propagation

119

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

Constant Scalar
Propagation

120

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

Constant Scalar
Propagation

121

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

Constant Scalar
Propagation

122

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar
Propagation

123

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Constant Scalar
Propagation

124

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar
Propagation

125

Constant Scalar
Propagation

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA

mcf 5 13
deepsjeng 2 14
LLVM opt 8 37

SSA Construction introduces new collections.

126

Constant Scalar
Propagation

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Construct a MEMOIR Program

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA Binary

mcf 5 13 5
deepsjeng 2 14 2
LLVM opt 8 37 8

SSA Destruction eliminates them, with no new copies!

127

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Performing a sparse data flow analysis on collections.

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar
Propagation

128

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Propagate element-level constants to optimize the program.

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar
Propagation

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

129

Analysis
Propagate element-level constants to optimize the program.

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = 10;

print(r);

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

130

Analysis
Generalizing scalar optimizations to operate on elements

GeneralizationConstant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

131

Analysis
Generalizing scalar optimizations to operate on elements

Live-Variable
Analysis

Live-Range
Analysis

GeneralizationConstant Scalar
Propagation

Constant Element
Propagation

Generalization

LLVM IR, etc. MEMOIR

132

Analysis
Generalizing scalar optimizations to operate on elements

Live-Variable
Analysis

Dead Variable
Elimination

Live-Range
Analysis

Dead Element
Elimination

GeneralizationConstant Scalar
Propagation

Constant Element
Propagation

Generalization

Generalization

LLVM IR, etc. MEMOIR

133

MEMO
IR

Evaluation
Production compilers provide negligible performance
improvements on mcf_s.

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

134

Evaluation
MEMOIR provides significant performance improvements
with several optimizations.

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR

135

Evaluation
Example Application: mcf_s from SPEC2017
Quick sort accounts for ~40% of exec. time

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);

136

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);

Evaluation
Example Application: mcf_s from SPEC2017
Quick sort accounts for ~40% of exec. time

[0, end)

[0, K)

137

[0, end)

Evaluation
Live Range Analysis propagates liveness information

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);
[0, K)

138

[0, K)

Evaluation
Live Range Analysis propagates liveness information

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);
[0, K)

139

[0, K)

[0, K)

Evaluation
Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);

140

Evaluation
Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);

Let’s zoom into the sort to see how this works.

[0, K)

[0, K)

141

Evaluation
Dead Element Elimination converts sort → partial sort!

Ti
m

e

142

Evaluation
Dead Element Elimination converts sort → partial sort!

Ti
m

e

143

Evaluation
Dead Element Elimination converts sort → partial sort!

Ti
m

e

Partition PartitionPivot

144

Evaluation
Dead Element Elimination converts sort → partial sort!

Ti
m

e

145

Evaluation
Dead Element Elimination converts sort → partial sort!

Ti
m

e

146

Evaluation
Dead Element Elimination converts sort → partial sort!

☠ ☠☠ ☠ ☠

Ti
m

e

[0, k) Dead elements

147

Evaluation
Dead Element Elimination converts sort → partial sort!

Identify and writes to dead elements

☠☠ ☠

☠ ☠ ☠ ☠☠

☠ ☠☠ ☠ ☠

Ti
m

e

[0, k) Dead elements

148

Evaluation
Dead Element Elimination converts sort → partial sort!

Eliminate writes to dead elements

Ti
m

e

[0, k) Dead elements

149

Evaluation
Dead Element Elimination converts sort → partial sort!

No primitive knowledge of sort!

Ti
m

e

[0, k) Dead elements

150

Evaluation
MEMOIR reduces O(nlogn) operation to O(n+klogk), k << n

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR

151

Analysis
Takeaway

Amenable to Analysis

Single Reference

Immutability

+

=

152

Transformation
Enabling Transformations
on Data Organization

153

Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

154

Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

Associative collection → Sequential collection
Reduce memory usage, faster access

155

Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

Associative collection → Sequential collection
Reduce memory usage, faster access

Field(s) of objects → Associative collection
Reduce memory usage, improve locality

156

Optimization
Field Elision

type T = { a: i32, b: i32,

 c: i32 }

x = new Seq<T>(N)

for (i=0..N) {

 x[i].a = ...

 x[i].b = ...

 if (...)

 x[i].c = ...

 }

}

Field 1

Field 2

Field 3

157

Optimization
Field Elision

Field 1

Field 2

type T = { a: i32, b: i32 }

c = new Assoc<&T, i32>(N)

x = new Seq<T>(N)

for (i=0..N) {

 x[i].a = ...

 x[i].b = ...

 if (...)

 c[x[i]] = ...

 }

}Replace the field with an associative collection

158

Optimization
Field Elision

Field 1

Field 2

type T = { a: i32, b: i32 }

c = new Assoc<&T, i32>(N)

x = new Seq<T>(N)

for (i=0..N) {

 x[i].a = ...

 x[i].b = ...

 if (...)

 c’ = INSERT(c, x[i])

 }

}Update the field uses

159

Optimization
Field Elision

Field 1

Field 2

type T = { a: i32, b: i32 }

c = new Assoc<&T, i32>(N)

x = new Seq<T>(N)

for (i=0..N) {

 x[i].a = ...

 x[i].b = ...

 if (...)

 c’ = INSERT(c, x[i])

 }

}Benefit: Field is only allocated if needed!

160

Evaluation
MEMOIR optimizations reduce memory usage!

Figure: Maximum resident set size of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR

161

Decoupling storage from organization

Transformation
Takeaway

Amenable to Transformation

+

=
Referential Transparency

162

Amenable to Analysis

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation

163

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

MEMOIR

Middle
End

Program Collections were lowered here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

164

Now, collections are lowered here.

Collections were lowered here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR

165

More information is preserved here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR

166

So, more optimizations can occur here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle
End

Program More information is preserved here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR

167

Developers and front-ends don’t need to
worry about optimized memory layout here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR

168

Because now the compiler can optimize it here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle
End

Program Developers and front-ends don’t need to
worry about optimized memory layout here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR

169

Conclusion
How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

github.com/arcana-lab/memoir

170

Conclusion
How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

github.com/arcana-lab/memoir

171

Conclusion
How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

Rust Mojo

More to come!…

github.com/arcana-lab/memoir

172

Representing Data Collections for
Analysis and Transformation
Tommy McMichen

www.mcmichen.cc

MEMOIR Repository
Developer Program

Impl.

Executable Low-Level
IR

Middle
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR

173

174

Motivations
Most Heap Memory is for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

175

Motivations
Most Reads from Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

176

Motivations
Most Writes to Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

177

Evaluation

MEMOIR requires reasonable compilation time

Benchmark

Compile Time (ms)

MEMOIR LLVM

-O0 -O3 -O0 -O3

mcf 70.6 776.4 20.9 663.2

deepsjeng 246.0 1867.6 34.8 852.8

LLVM opt 225.9 668.4 52.0 414.7

178

mcf_s Execution Time with Pass Breakdown

Lower is better.

Figure 3: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

179

mcf_s Max RSS with Pass Breakdown

Lower is better.

Figure: Maximum resident set size usage of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

180

Global Value Numbering is conservative because of memory
operations

181

Sink is commonly blocked by memory operations

182

mcf_s parallel speedup with DEE optimization

