Representing Data Collections

for Analysis and Transformation

Tommy M‘Michen
March 8, 2024

Northwestern)
University ARCANA

A Brief History of Compilation.

A Brief History of Compilation.

Motivation.
The problem with compilers.

A Brief History of Compilation.

Motivation.
The problem with compilers.

Compilation.
What is it?

Introduction

What is Compilation?

(Program

Introduction
What is a Pragmatic Definition of Compilation?

Impl.

Progrd™

<

Compilers.
How do they work?

Program
Impl.

Executable

History
Manual Compilation

Developer Assembler Executable
‘ o A\ . A\
Instructions = s and 0's
Registers
Order

History
The Compiler as a Translator

Developer Portable
P Assembly
A

4 A\
Operations

Variables

Control Flow

L

History
The Compiler as a Translator

Developer ARG
P Assembly
4 s A\ 4 A A\
Operations = Instructions
Variables Registers
Control Flow Order

12

History
The Compiler as a Translator

Operations = Machine Instructions

History
The Compiler as a Translator

Operations = Machine Instructions

Instruction Selection

1 =1+ 1 > rl < add ri, #1

History
The Compiler as a Translator

Unlimited # of Variables = Limited Set of Registers

History
The Compiler as a Translator

Unlimited # of Variables = Limited Set of Registers

Register Allocation
a =1 rl < #1
b = 2 > 12 — #2
c=a+b r3 « add ri, r2

History
The Compiler as a Translator

Control Flow = Program Order

History
The Compiler as a Translator

Control Flow = Program Order

Linearization
if 2 { } if ? goto true
else {M} >]
return goto continue

true: [

done: return

History
Machine Capabilities Improve

Portable

New capabilities

History
...and Users want to Fully Utilize Machines

Portable

Hey! l want to New capabilities

use all of my
machine!

User

History
So Developers Oblige.

/ _
Optimized

Developer Portable Executable

Assembly

— gy =

Manual
Optimizations

History
Machine Capabilities are a Moving Target

/ _
Optimized
Developer Portable Executable
Assembly

Hey! l want to New capabilities

use all of my
machine!

User

History
...s0 Developers oblige, again...

4 Optimized

Optimized
Portable
Assembly

Developer Executable

- ==

Manual
Optimizations

History

...but optimizations are not necessarily composable.

/~

Optimized
Optimized?
Assembly

Executable

History
...and Manual Optimizations make Programs
Unmaintainable!

Today’s optimized program becomes
tomorrow’s unmaintainable program

History
...and Manual Optimizations increase Engineering Costs!

4 Optimized
Optimized?)
Portable —)[Compiler Executable
Assembly

Today’s optimized program becomes
tomorrow’s unmaintainable program

History
How do we fix this?

Developer Flil s
Assembly

Executable

Have the compiler perform
optimizations

History
The Compiler as an Optimizer

/
Portable
Assembly

Optimized
Portable Translator
Assembly

History
The Compiler as an Optimizer

Constant Folding
a =1
b = 2 > C = 3
Cc=a+b

History
The Compiler as an Optimizer

Constant Folding
a =1
b = 2 > C = 3
c=a+b

Instruction Combining
1 =1+1 i 49
i=1+1 ted

History
The Compiler as an Optimizer

Constant Folding
a =1
b = 2 > C = 3
c=a+b

Instruction Combining
1 =1+1 > iz i+
i=1+1 ted

Dead Code Elimination

X=.O.
y = X + 2 >
return x

X = L BN N)
return x

History
The Compiler as an Optimizer

Constant Folding
a =1
b = 2 > C = 3
Cc=a+b

Instruction Combining

1 1 + 1
1 1 + 1

Dead Code Elimination

X=.O.
y = X + 2
return Xx

History
Optimizations Make Software Engineering Easier!

Dev’s Code

a ALICE_NUM
BOB_NUM
a+ b

c + 1

b
C
d

[Single point of control }

History
Optimizations Make Software Engineering Easier!

Dev’'s Code

a = ALICE_NUM a =1

b = BOB_NUM —> b = 2 —> —>
c=a+6b c=a=+6b c =3

d =c+1 d =c+1 d =c+1 d = 4

Single point of control

History
The Compiler as an Engineering Nightmare

C Xx86
Program Assembly

History
The Compiler as an Engineering Nightmare

/

C Xx86
Program * Assembly

C++
Program

Ci
Program

/

Java
Program

History
The Compiler as an Engineering Nightmare

/
C x86
Program \ / Assembly
/
C++ *\’l X64
Program Y V’ Assembly
§ Ct >’>’(‘/ ARM
/NN
Program 4"‘» Assembly
/
Java / \ RISC-V
Program Assembly

... P ... A

n m

History
The Compiler as an Engineering Nightmare

/

C Xx86
Program \ / Assembly
/
C++ *\’l X64
Program Y V’ Assembly
QL
/ >«’/
Ci 4A A» ARM
Program ,“ Assembly
/
Java / \ RISC-V
Program Assembly
We need to develop n‘m

..P compilers! .. A

n m

History
The Compiler as a Bridge

/

C
Program

Only need n front-ends

C++
Program

Vi

Ct
Program

/

Java
Program

P

n

x86
Assembly

X64
Assembly

ARM
Assembly

RISC-V

Assembly

History

The Compiler as a Bridge

/
C

Program

C++
Program

Ct
Program

/
Java

Program

... P

n

”

el

-

Only need m back-ends

x86
Assembly

X64
Assembly

ARM
Assembly

RISC-V

Assembly

m

40

History

The Compiler as a Bridge

/
C

Program

C++
Program

Ct
Program

/
Java

Program

Common optimizations
can be shared

... P

n

x86
Assembly

X64
Assembly

ARM
Assembly

RISC-V

Assembly

... A

m

41

History
What is a Modern Definition of Compilation?

Progro™

Executable

So, what’s the modern problem?
Premature Lowering.

So, what’s the modern problem?
Premature Lowering.

Lowering:

Lowering is the destruction of high-level
information by the instantiation of
low-level decisions.

Motivation
What is Lowering?

Decreasing degrees of freedom
Decreasing guarantees

Executable

o
Prognom™

Motivation
What Kinds of Lowerings Exist?

Problem-specific lowering

Language—spiciﬁc lowering
{ “\

o
Prognom™

Executable

\ J \u J
Y

Y
Architecture-specific lowering General-purpose lowering

T
47

Motivation
What is Premature Lowering?

_ -~ Adecision made early.

-

®
Progro™

Executable

=>°

Blocks a beneficial decision later. = ~
SE——

An instance of premature lowering:
Data Collections.

Data Collection:
A Logical Organization of Data.

Motivation
Data Collections: Logical Organization of Data

List

Motivation
Data Collections: Logical Organization of Data

List

Dense Array

Sparse Array

Motivation
Data Collections: Logical Organization of Data

-0 B B
(WO
\\

List

—

Set

Dense Array

Sparse Array

Motivation

Data Collections: Logical Organization of Data

List

Dense Array

Sparse Array

e

« 1 I

—

Set

Tree

Motivation

Data Collections: Logical Organization of Data

List

Dense Array

Sparse Array

e

« 1 I

—

Set

Tree

Graph

Motivation
How are Collections Lowered?
@

Progro™ Developers manually lower
L’ collections here.

Impl.

Executable

Motivation
How are Collections Lowered?

Modern languages
y lower collections here.

o
Prognom™

Executable

Motivation
Collections are lowered to their in-memory layout

Collections Memory Layout
r A N\ Lowering 7 A N\
Data —)* > Memory Block(s)
Organization % Untyped
Typed o

Motivation
Compilers are forced to glean conservative information

Collections Memory Layout
p A N Analysis p A N
Data ? Memory Block(s)
Organization j(_ Untyped
Typed <€

Motivation
Compilers are forced to glean conservative information

Collections Memory Layout
p A \ Analysis p A \
Data ? Memory Block(s)
Organization j(_ Untyped
Typed €

[Useful information has been destroyed!]

Motivation

Example: Hash table

/

Motivation

Example: Hash table

size < load factor

71 = B

Motivation

Example: Hash table

/

U size > load factor? reallocate and rehash

/I

Motivation

Example: Hash table

/

Unrelated elements are moved!

a

Motivation
What are the consequences?

std::unordered_map<int, int> table = ... ;

table[0] = 10
table[1] = 20
pr1nt(tab1e[0]);

Motivation
What are the consequences?

std::unordered_map<int, int> table = ... ;

table[0] = 10;
table[1l] = 20;
print(table[0]);

Motivation
What are the consequences?

std::unordered_map<int, int> table = ... ;
table[0] = 10;
table[1] = 20;;?(
print(table[0]);

No production compiler can propagate 10 to the
print statement

Motivation
What are the consequences?

std::unordered_map<int, int> table = ... ;

table[0] = 10
table[1] = 20 realloc(table, ...);
prlnt(table[w]); rehash(table);

Simple operations > complex memory behavior.

Motivation
What are the consequences?

std::unordered_map<int, int> table = ... ;

table[0] '
table[1] % # { realloc(table, ...);
print(table[0]); rehash(table);

Complex memory behavior blocks optimizations!

69

Motivations
Constant Folding Rarely Succeeds with Memory Operations

100%

I Scalar Success
[1 Load Success
B 1 0ad Fail

80%

68.3%

60%

40%

% of Attempts

20%

0%

5

e“c‘&\ %C«c mC QQ

\'8 A . \2 1
ot ﬁa\aﬁc‘o&“ K20 6@6@36“% Ye= *

per®

Figure: Breakdown of attempts to perform constant folding.

Motivation
Collections are Prematurely Lowered.

Collections being lowered here.

o
Prognom™

Executable

Motivation
Collections are Prematurely Lowered.

o
Prognom™

Executable

Blocks optimizations here. ©
SE————————————————————————————————

72

Insights
Stems from premature lowering to fixed implementations
manually or via libraries

Library

Implementation

Linking

>0

Source
Program

—)(LLVMIR > -

Manual Optimized

Optimizations Program

Insights
Stems from premature lowering to fixed implementations
manually or via libraries

Library

Implementation

Linking

>0

—> LLVMIR > -

A

Source
Program

Manual Optimized malloc)
Optimizations Program realloc
load
store
5P J
The compiler is left with low-level memory A

operations

Proposal

Progressively lower to MEMOIR before library

implementation

Source
Program

Memory-Centric

Optimizations

Proposal
Implement Memory Optimizations within the Compiler for
Easy, Automatic Reuse

Source

Program LLVMIR > -

Memory-Centric
Optimizations

MEMOIR

The first SSA IR for data
collections.

Goals
Representing Data Collections in the Compiler

[General-purpose]

Goals
Representing Data Collections in the Compiler

[General-purpose]

[Amenable to Analysis]

Goals
Representing Data Collections in the Compiler

[General-purpose]

[Amenable to Analysis]

[Amenable to Transformation]

80

Goals
Representing Data Collections in the Compiler

[General-purpose]

Amenable to Analysis

Amenable to Transformation

Representation
General-Purpose Data Collections

.,., —— T T~
List -). <\! . //)
Set ‘ 2)

Tree

&

Graph

Dense Array

Sparse Array

82

Representation
General-Purpose Data Collections

~\

-
.,., —— T T~
List -). <\! . //)

Set ‘ 2)

o

Sequential

Ty T I B
Dense Array ;T T @
Sparse Array b Map 7 Graph

83

Representation

General-Purpose Data Collections

List

=

Sequential

T e Y B
Dense Array

s

Sparse Array

~\

r

. TE—

(III

\—_-—

Set

‘ Associative |

————\

(\
|
|
|

N\ /

Map

Tree

Graph

Representation
Most accesses to heap memory is for structured data

I Unstructured [Graph [Tree
I Associative [Sequential [1 Object

100% E—
80%
60%
40%
20%

% of Bytes Accessed

0% = P~
o~ 9 ~
5§ 55 §57 85 8 8 5
LS S5 8§ % A &9 S
S¥¥ TE TS S 5 g
g8 S5 23 S K2 3

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

85

Representation
Most accesses to heap memory is for structured data

100%
80%
60%
40%
20%

0%

I Unstructured [Graph [Tree
I Associative [Sequential [1 Object

% of Bytes Accessed

S 3
S5 5§
o8 $8
55 5§ %
~
I§ ’% =]

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

Representation

General-Purpose Data Collections

List

=

Sequential

T e Y B
Dense Array

s

Sparse Array

~\

r

. TE—

(III

\—_-—

Set

‘ Associative |

————\

(\
|
|
|

N\ /

Map

Tree

Graph

87

Representation

General-Purpose Data Collections

List

=

Sequential

T e Y B
Dense Array

s

Sparse Array

~\

r

. TE—

(III

\—_-—

Set

‘ Associative |

————\

(\
|
|
|

N\ /

Map

Tree
| id-> [2 xid] |

Graph
| id - {id} |

88

Representation

General-Purpose Data Collections

List

==

Sequential

T e Y B
Dense Array

s

Sparse Array

~\

r

. TE—

(III

\——I—

Set

‘ Associative |

————\

(\
|
|
|

\ /

Map

Representation
Decoupling Data from its Logical Organization

Example: Linked List

“I

Representation
Decoupling Data from its Logical Organization

Example: Linked List

Index space: 0 1 2 3

Representation
Decoupling Data from its Logical Organization

Example: Linked List

® ® > @ ® >
Index-value mapping: 'T‘
Index space: 0 1 2 3

Representation
Decoupling Data from its Logical Organization

Example: Linked List

Index-value mapping: m m ’T‘

Index space:

N
W

Abstract away the memory used to logically organize the
collection.

Representation
Abstraction of Logical Organization

Associative Sequential
Uniqueness in index space Contiguous in index space
AN .

4 \ 4 \

Map keys to values Map indices to values

Representation
Abstraction of Logical Organization

{ Associative J » { Sequential J

Uniqueness in index space Contiguous in index space

Additional properties of index space

Representation
Takeaway

[Multiple layouts - single abstraction]

==

[Structure and properties of data organization]

[General-purpose]

Overview
Representing Data Collections in the Compiler

[General-purpose y

Amenable to Analysis

Amenable to Transformation

Overview
Representing Data Collections in the Compiler

General-purpose

{ Amenable to Analysis J

Amenable to Transformation

Analysis
Enabling Analysis with
Intermediate Representations

Analysis
Impact of Program Representation on Analysis

Program Data Flow Graph
a =1

b = 2 -

c=a+b

b =c¢c % 2

a=>b-oc

Analysis
Impact of Program Representation on Analysis

Data Flow Graph
S A
b
/ = -7
4) // /,, b
a can be definedby | _-7 _--"
multi '
ple operations 9 . .
_ 4

101

Analysis
Impact of Program Representation on Analysis

Data Flow Graph
=
2 -]
- ™
Which assignmenttoaisused | _
by the + operation? > —>7%
\ g

102

Analysis

Enabling Analysis with IR Design

a

-

Intermediate representations (IR) simplify
analysis and transformation.

N

4

103

Analysis
Enabling Analysis with IR Design

Intermediate representations (IR) simplify
analysis and transformation.

[Example: Static Single Assignment (SSA)]

104

Analysis
Static Single Assignment (SSA)

Each variable in program has a single definition

%=1 %=1
= 2 = 2
©=a+b = ©=a+b
b)=c x 2 ®D=c x2
@=b - c @)=b" -c

105

Analysis
Static Single Assignment (SSA)

@-=1
b = 2
©-0+®
@-©~ >
@-® -©
4)

Each variable use has referential transparency:

The variable can be replaced with its definition.
- Y,

106

Analysis
Static Single Assignment (SSA)

Each variable in program has a single definition

—

Q)T (O) T Qv
1|

o N0 9 N -
* +

O N T

107

Analysis
Example: Constant Propagation

@ -
®

a 1

b 2

c)=a + b = C

b)= c * 2 b’ = ¢ * 2
a)=b - c a’' =b" -c

With referential transparency, constant
propagation becomes trivial

108

Analysis
Example: Constant Propagation

®0e

@
b

a 1
b 2
O=a+ b = c =@+b
b)= c * 2 b’ = ¢ * 2
a)=b - c a' = b'" - ¢

With referential transparency, constant
propagation becomes trivial

109

Analysis
Example: Constant Propagation

@08

@
b

a 1
b 2
O=a+ b = c=0+@
b)= c * 2 b’ = ¢ * 2
a)=b - c a' = b'" - ¢

With referential transparency, constant
propagation becomes trivial

110

MEMOIR
Data Collections

(

An SSA collection variable is the only reference to that
collection.

o

m

MEMOIR
Data Collections

SSA collections are immutable for their static lifetime.
A collection variable is a collection

112

MEMOIR
Element-Level Operations

Conventional Collection-Aware
allocate(# of bytes) > allocate(# of elements)
o _ I 4
~ -~
S~ ~ Phe -
S o -~ _- -
=~ -

Reason about elements instead of bytes.

113

MEMOIR
Element-Level Operations

Conventional Collection-Aware

allocate(# of bytes) > allocate(# of elements)
reallocate(pointer, # of bytes) —IZ insert(collection, index, ...)

'Y
\\\ > remove(collection, index)
\\\ //
S o ’,
~ /7
\\ /

Whether a collection is growing or shrinking is explicit.

M4

MEMOIR
Element-Level Operations

Conventional Collection-Aware

allocate(# of bytes) > allocate(# of elements)
reallocate(pointer, # of bytes) —IZ insert(collection, index)
remove(collection, index)

access(pointer, offset in bytes) ——> access(collection, index)

Access explicitly references collection and element.

115

Analysis
Where scalar analysis and transformation fails.

LLVM IR, etc.

Constant Scalar
Propagation

table = ... ;
table[0]

10,
table[1] = 20; ‘2

print(table[0]);

116

Analysis
Element-Level analysis and transformation can prevail.

LLVM IR, etc. MEMOIR
Constant Scalar Constant Element
Propagation Propagation
table = ... ; ... table = ...;
table[0] =

10; table[0] = 10;
table[1] 20;;2 table[1] =@*/

print(table[0]); print(10);

117

Analysis
Construct a MEMOIR Program

LLVM IR, etc. MEMOIR
Constant Scalar Constant Element
Propagation Propagation

table = ... ; > Assoc<int,int> table = ... ;

table[0] = 10;
table[1] = 20;
print(table[0]);

118

Analysis

Construct a MEMOIR Program

LLVM IR, etc.

Constant Scalar
Propagation

table =

table[0] = 10;

> tablel

table[1] = 20;

print(table[0]);

MEMOIR

Constant Element
Propagation

Assoc<int,int> |table = ... ;

INSERT(table, 0, 10);

19

Analysis
Construct a MEMOIR Program

LLVM IR, etc. MEMOIR
Constant Scalar Constant Element
Propagation Propagation
table = ... ; Assoc<int,int> table = ... ;
table[0] = 10; > [tablel = INSERT(table, 0, 10);
table[1] = 20;
print(table[0]);

120

Analysis
Construct a MEMOIR Program

LLVM IR, etc. MEMOIR
Constant Scalar Constant Element
Propagation Propagation
table = ... ; Assoc<int,int> table = ... ;
table[0] = 10; tablel = INSERT(table, 0, 10);
table[1] = 20; > table2 = INSERT(tabIel[1, 20);
print(table[0]);

121

Analysis
Construct a MEMOIR Program

LLVM IR, etc. MEMOIR
Constant Scalar Constant Element
Propagation Propagation
table = ... ; Assoc<int,int> table = ... ;
table[0] = 10; tablel = INSERT(table, 0, 10);
table[1] = 20; > [table2 = INSERT(tablel, 1, 20);
print(table[0]);

122

Analysis
Construct a MEMOIR Program

LLVM IR, etc. MEMOIR
Constant Scalar Constant Element
Propagation Propagation
table = ... ; Assoc<int,int> table = ... ;
table[0] = 10; tablel = INSERT(table, 0, 10);
table[1] = 20; table2 = INSERT(tablel, 1, 20);
print(table[0]); > r = READ(table2, 0)

——> print(r);

123

Analysis

Construct a MEMOIR Program

LLVM IR, etc.

Constant Scalar
Propagation

table =
table[0] = 10;
table[1] = 20;

print(table[0]);

MEMOIR

Constant Element
Propagation

Assoc<int,int> |table = ... ;

tablel = INSERT(table, 0, 10);
[table2) - INSERT(tablel, 1, 20);
r = (table2, 0)

print(r);

124

Number of Collections
Benchmark Source SSA
mcf 5 13
deepsjeng 2 14
LLVM opt 8 37
[SSA Construction introduces new collections.]

125

Number of Collections
Benchmark Source SSA Binary
mcf 5 > 5
deepsjeng y) > 2
LLVM opt 8 . 8

[SSA Destruction eliminates them, with no new copies!]

126

Analysis

Performing a sparse data flow analysis on collections.

LLVM IR, etc.

Constant Scalar
Propagation

1} =

{ 010 } <
{ 0»10, 1520 } <

MEMOIR

Constant Element
Propagation

Assoc<int,int> table = ... ;

tablel = INSERT(table, 0, 10);
N TN
table2 -= INSERT(tab'I.el, 1, 20);

N—1
r = READ(table2, 0)
print(r);

127

Analysis

Propagate element-level constants to optimize the program.

LLVM IR, etc.

Constant Scalar
Propagation

1} =

{ 010 } <
{1010, 1»20 } <

MEMOIR

Constant Element
Propagation

Assoc<int,int> table = ... ;

tablel = INSERT(table, 0, 10);
N \
table2 -= INSERT(tab'I.el, 1, 2@);

N— 2\
r = READ(table2, (0)
print(r);

128

Analysis

Propagate element-level constants to optimize the program.

LLVM IR, etc.

Constant Scalar
Propagation

1} =

{ 010 } <
{1010, 1»20 } <

MEMOIR

Constant Element
Propagation

Assoc<int,int> table = ... ;

tablel = INSERT(table, 0, 10);
N \

table2 -= INSERT(tab'l.el, 1, 20);
\/N

r =

print(r);

129

Analysis
Generalizing scalar optimizations to operate on elements

LLVM IR, etc. MEMOIR

Constant Scalar . .. Constant Element
. Generalization .
Propagation Propagation

130

Analysis
Generalizing scalar optimizations to operate on elements

LLVM IR, etc. MEMOIR

Constant Scalar . .. Constant Element
. Generalization .
Propagation Propagation
Live-Variable . .. Live-Range
. Generalization .
Analysis Analysis

131

Analysis
Generalizing scalar optimizations to operate on elements

LLVM IR, etc. MEMOIR

Constant Scalar . .. Constant Element
. Generalization .
Propagation Propagation
Live-Variable . .. Live-Range
. Generalization .
Analysis Analysis
Dead Variable .. Dead Element
e o e Generalization e .
Elimination Elimination

132

Evaluation
Production compilers provide negligible performance

improvements on mcf_s.

10%
2.1%

0% 5
0 0.0% BN 0. 7%

-10% Lower is better.

- 20%

Execution time

-30%
1 I I I

Qﬂw&ﬂw”‘ oCC C

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

133

Evaluation
MEMOIR provides significant performance |mprovements

\
with several optimizations. Y

10%
2 U F \
é‘* 0% 0.0% = m—
-% - 10% Lower is better.
S -20%
4
M 309 | | | 25 7%

Q}IN‘ NASANCES X%(‘l N\O‘Y‘

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

134

Evaluation

Example Application: mcf_s from SPEC2017

Quick sort accounts for ~40% of exec. time
Seq<T> sorted = gsort(in);

for (1 = 0 to K)
v = READ(sorted, 1i);
if (v > threshold)
use(v);

135

Evaluation

Example Application: mcf_s from SPEC2017

Quick sort accounts for ~40% of exec. time

Seq<T> sorted = gsort(in); }.[0, end)
for (1 = 0 to K))
v = READ(sorted, i);
if (v > threshold) - [0, K)
use(v);

136

Evaluation
Live Range Analysis propagates liveness information

Seq<T> sorted = gsort(in); }-[0, end)

for (1 = 0 to K)

v = READ(sorted, 1);
if (v > threshold) {[Q’ K)]
use(v);

137

Evaluation

Live Range Analysis propagates liveness information

Seq<T> sorted = gsort(in);

for (i = @ to K)
v = READ(sorted, i);
if (v > threshold)
use(v);

o, w0

N\

{[Q, K)

138

Evaluation
Dead Element Elimination converts sort - partial sort!

Seq<T> sorted =[qsort’(in, 0, K);]

for (i = @ to K)
v = READ(sorted, i);
if (v > threshold)
use(v);

139

Evaluation
Dead Element Elimination converts sort - partial sort!

Seq<T> sorted =[qsort’(in, 0, K);]

for (i = @ to K)
v = READ(sorted, i);
if (v > threshold)
use(v);

[Let’s zoom into the sort to see how this works.]

140

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

141

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

142

Evaluation
Dead Element Elimination converts sort - partial sort!

Partition iPivot Partition

Time

143

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

m 1

144

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

145

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

146

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

Y Y
[0, k) Dead elements

[Identify and writes to dead elements]

147

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

Y Y
[0, k) Dead elements

[Eliminate writes to dead elements]

148

Evaluation
Dead Element Elimination converts sort - partial sort!

Time

)

Y Y
[0, k) Dead elements

[No primitive knowledge of sort!]

149

Evaluation

MEMOIR reduces O(nlogn) operation to \O(n+klogk)), k<<n

o 10% E
= 2.1%
: 0% 0.0%
'§ - 10% Lower is better.
é - 20%
300 228, 7%
| | | |]
0 A\ A C C R

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

150

Analysis
Takeaway

Transformation
Enabling Transformations
on Data Organization

Transformation
Data Organization Optimizations

Reduce memory usage

[Dead Field Elimination]

153

Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

Associative collection - Sequential collection
Reduce memory usage, faster access

154

Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

Associative collection - Sequential collection
Reduce memory usage, faster access

Field(s) of objects - Associative collection
Reduce memory usage, improve locality

155

Optimization
Field Elision

Field 2
Field 3

type T = { a: i32, b: 132,
c: 132 }
X = new Seq<T>(N)
for (i=0..N) {
x[i].a = ...
x[i].b
if (...)
C

x[1].

156

Optimization
Field Elision

type T = { a: i32, b: i32 }

c = new Assoc<§T, 132>(N)

Field 2

[Replace the field with an associative collection]

157

Optimization
Field Elision

T =1{ a: 132, b: i32 }

C = Assoc<&T, 1i32>(N)
X = Seq<T>(N)
. 1=0 ..
Field 1 e
x[1i].a = ...
Field 2 x[i].b = ...
(...)

158

Optimization
Field Elision

Field 1
Field 2

[Benefit: Field is only allocated if needed!]

159

Evaluation
MEMOIR optimizations reduce memory usage!

L

10% -
F 0.0%
z e [0.0% 0.0% -0.0%
2 X
X 10% _ Lower is better.
-20% |
! ! ! l ! 2080

M GCC GO

Figure: Maximum resident set size of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

160

Transformation
Takeaway

[Decoupling storage from organization]

==

[Referential Transparency]

[Amenable to Transformation]

T
161

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Analysis

[Amenable to Transformation V

162

Conclusion

What is a Collection-Oriented Definition of Compilation?

Collections were lowered here.

Y

o
Prognom™

Program
Impl.

Executable

MEMOIR

Conclusion

What is a Collection-Oriented Definition of Compilation?

o
Prognom™

Executable

MEMOIR

Now, collections are lowered here.

164

Conclusion
What is a Collection-Oriented Definition of Compilation?

More information is preserved here.]\
N

N

MEMOIR

Program
Impl.

®
Progro™

Executable

Conclusion
What is a Collection-Oriented Definition of Compilation?

o
Prognom™
N . X
4 2o

Executable

So, more optimizations can occur here.
SIS,

166

Conclusion
What is a Collection-Oriented Definition of Compilation?
O

Developers and front-ends don’t need to
Pre 1 [worry about optimized memory layout here.]
/7 I

G & :

MEMOIR

Impl.

Executable

Conclusion
What is a Collection-Oriented Definition of Compilation?
O

Prognem
QY &

Executable

/

Because now the compiler can optimize it here.
EE———

168

Conclusion
How can | use MEMOIR today?

. . . github.com/arcana-lab/memoir
Write a pass with our open source compiler

AL
r N\

T e

169

Conclusion
How can | use MEMOIR today?

. . . github.com/arcana-lab/memoir
Write a pass with our open source compiler

y
4 \

R

Write a program using the MEMOIR toolchain]

7

.

4 N

Conclusion
How can | use MEMOIR today?

. . . github.com/arcana-lab/memoir
Write a pass with our open source compiler

y
4 \

R

Write a program using the MEMOIR toolchain]

7

.

Representing Data Collections for

Analysis and Transformation
Tommy M‘Michen

4

MEMOIR

Executable

Progrd™
/
Impl.

Motivations

Most Heap Memory is for Structured Data

I Unstructured [0 Graph [] Tree
I Associative [Sequential [Object

100% r
-]
£ 809
Q
2
2 60% |
wn
8
= 40%
M
G
;; 20%
0% 5 = “ Q, Y & N
o~ O o~ Qo 3 > Q \O o
S5 &5 f5 888 8 £ F§ 5F°
5 L 1’717 o S o) 3 QY &
£§& KT & 4 K S

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

174

Motivations
Most Reads from Heap Memory are for Structured Data

I Unstructured [0 Graph [] Tree
I Associative [Sequential [Object

100% —
- 80% F
—]
175) 60%-
a8
>
E 40%
o
R 20% |
% & e) @ N
3§ & F & 5 75 R
o5 o S =) 2
QS [~] 3 Q)
X 15 S &
o S 5 o)

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

175

Motivations

Most Writes to Heap Memory are for Structured Data

I Unstructured [0 Graph [] Tree
I Associative [Sequential [Object

100% -

§ 80% I

= (—

= 60%

w

3]

& 40% |

(-

o

s 20% -
5) O O & o, 3) T
§§5'§§5<§588&3.§S a~f’~§§ g & -
S 8§ S§ Y %g w8 § 3 S
58 O o 3 9 3 5 &
QS QLY {45 3 S

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

176

Evaluation

MEMOIR requires reasonable compilation time

mcf_s Execution Time with Pass Breakdown

Lower is better.
10% E
0%

- 10%

- 20%

Execution time

-30% :

WM cC \c&qw oEP r® 9% ?@*\E@@g&v@@ A
D

PN

Figure 3: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

178

mcf_s Max RSS with Pass Breakdown

Lower is better.

10%
- F 0.0% 0.0% g—
2 00% 00% 00%
a7 N
Sh-10% |
>, -

-20% |

- | | | | | | | : : -20,8% -20,8%
9 A C C
A,

Figure: Maximum resident set size usage of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

179

Global Value Numbering is conservative because of memory
operations

% Value Numbers
for Memory

180

Sink is commonly blocked by memory operations

50%

B Success 41.0% 40.8%
40% [May Write

B May Reference
30%

21.5% 21.8%

20% 18.7% . :
10%

% of Attempts

0%

181

mcf_s parallel speedup with DEE optimization

Speedup

B Partial Sort W Baseline

3.000

2.500

2.000

a1

1.500

1.38

1.000

1.000 J

0.500

T ANO T OO0 T AN MSTWW O~ —~AHNMT W OM~000 0 v« N
FFFFFFFFFF N AN AN AN AN NN ANANANOOM

o

Cores

182

