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A Brief History of Compilation.

Motivation.
The problem with compilers.

How do we solve it?

Feel free toask questions at any time!
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Compilation.
What is it?
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Introduction
What is Compilation?

Compiler ExecutableProgram
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Introduction
What is a Pragmatic Definition of Compilation?

CompilerDeveloper Program
Impl. Executable

Program
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Compilers.
How do they work?

CompilerDeveloper Program
Impl. Executable

Program
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History
Manual Compilation

Assembly AssemblerDeveloper Executable

Instructions

Registers

Order

1’s and 0’s⇒
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AssemblyPortable
Assembly

History
The Compiler as a Translator

CompilerDeveloper

Operations

Variables

Control Flow

Instructions

Registers

Order

⇒
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Operations ⇒ Machine Instructions

History
The Compiler as a Translator
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Operations ⇒ Machine Instructions

Instruction Selection

History
The Compiler as a Translator

i = i + 1 r1 <- add r1, #1
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Unlimited # of Variables ⇒ Limited Set of Registers

History
The Compiler as a Translator
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Unlimited # of Variables ⇒ Limited Set of Registers

Register Allocation

History
The Compiler as a Translator

a = 1
b = 2
c = a + b

r1 <- #1
r2 <- #2
r3 <- add r1, r2
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Control Flow ⇒ Program Order

History
The Compiler as a Translator
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if ? {...}
else {...}
return

      if ? goto true
      ...
      goto continue
true: ...
done: return

Control Flow ⇒ Program Order

Linearization

History
The Compiler as a Translator
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History
Machine Capabilities Improve

ExecutablePortable
Assembly CompilerDeveloper

New capabilities
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History
…and Users want to Fully Utilize Machines

Portable
Assembly CompilerDeveloper

Hey! I want to 
use all of my 

machine!

New capabilities

Executable

User
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History
So Developers Oblige.

Optimized
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Manual
Optimizations

Executable



22

History
Machine Capabilities are a Moving Target

Optimized
Portable
Assembly

CompilerDeveloper

New capabilities

Executable

Hey! I want to 
use all of my 

machine!

User
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History
…so Developers oblige, again…

Optimized
Optimized
Portable
Assembly

CompilerDeveloper

Manual
Optimizations

Executable
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History
…but optimizations are not necessarily composable.

Optimized
Optimized?

Portable
Assembly

CompilerDeveloper Executable
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History
…and Manual Optimizations make Programs 
Unmaintainable!

Optimized
Optimized?

Portable
Assembly

CompilerDeveloper

Today’s optimized program becomes 
tomorrow’s unmaintainable program

Executable
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Today’s optimized program becomes 
tomorrow’s unmaintainable program

History
…and Manual Optimizations increase Engineering Costs!

Maintenance is the true cost of software.
Bug fixes, security patches, platform updates, etc.

Optimized
Optimized?

Portable
Assembly

CompilerDeveloper Executable
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History
How do we fix this?

Portable
AssemblyDeveloper

Have the compiler perform 
optimizations

ExecutableOptimizing
Compiler
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Portable
Assembly

History
The Compiler as an Optimizer

Optimizer
Optimized
Portable
Assembly

Translator
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Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3
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Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3

i = i + 1
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y = x + 2
return x

x = ...
return x

Instruction Combining

Dead Code Elimination
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Constant Folding

History
The Compiler as an Optimizer

a = 1
b = 2
c = a + b

c = 3

i = i + 1
i = i + 1 i = i + 2

x = ...
y = x + 2
return x

x = ...
return x

Instruction Combining

Dead Code Elimination There are 100s of 

optimization passes in 
LLVM!
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History
Optimizations Make Software Engineering Easier!

Dev’s Code
a = ALICE_NUM
b = BOB_NUM
c = a + b
d = c + 1

Single point of control
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History
Optimizations Make Software Engineering Easier!

Single point of control

Dev’s Code
a = ALICE_NUM
b = BOB_NUM
c = a + b
d = c + 1

a = 1
b = 2
c = a + b
d = c + 1

c = 3
d = c + 1 d = 4
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History
The Compiler as an Engineering Nightmare

C
Program

x86
Assembly
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History
The Compiler as an Engineering Nightmare

C
Program

C++
Program

C#
Program

Java
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

… Pn … Am

We need to develop n·m 
compilers!
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General-Purpose 
IR
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The Compiler as a Bridge
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x86
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General-Purpose 
IR

History
The Compiler as a Bridge

C
Program

x64
Assembly

x86
Assembly

ARM
Assembly

RISC-V
Assembly

C++
Program

C#
Program

Java
Program

… Pn … Am

Only need m back-ends

Only need n front-ends

Common optimizations 
can be shared
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Back
End

Back
End

Front
End

Front
End

History
What is a Modern Definition of Compilation?

Front
EndDeveloper Program

Impl.

Executable Back
End IR

IR

Middle
End

Program
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Lowering:
Lowering is the destruction of high-level 
information by the instantiation of 
low-level decisions.
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Motivation
What is Lowering?

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program
Decreasing degrees of freedom

Decreasing guarantees

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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Back
End

Back
End

Motivation
What Kinds of Lowerings Exist?

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program

Language-specific lowering

Architecture-specific lowering General-purpose lowering

Problem-specific lowering

Front
End

Front
End

Front
End

Back
End
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Motivation
What is Premature Lowering?

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program
A decision made early.

Blocks a beneficial decision later.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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An instance of premature lowering:
Data Collections.
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Data Collection:
A Logical Organization of Data.
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Motivation
Data Collections: Logical Organization of Data

List
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Motivation
Data Collections: Logical Organization of Data

List

Set

Map

Tree

Graph

Dense Array

Sparse Array
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Motivation
How are Collections Lowered?

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program Developers manually lower 
collections here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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Motivation
How are Collections Lowered?

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program Modern languages 
lower collections here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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Motivation
Collections are lowered to their in-memory layout

Collections
Lowering

Memory Layout

Memory Block(s)

Untyped

Data

Organization

Typed
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Motivation
Compilers are forced to glean conservative information

Collections
Analysis

Memory Layout

Memory Block(s)

Untyped

Data
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Typed
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Motivation
Compilers are forced to glean conservative information

Collections
Analysis

Memory Layout

Memory Block(s)

Untyped

Data

Organization

Typed

?

Useful information has been destroyed!



61

Motivation
Example: Hash table

Insert

／
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Motivation
Example: Hash table

Insert

／ ⇒
size < load factor

size ≥ load factor? reallocate and rehash

⇒

／ ／
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Motivation
Example: Hash table

Insert

／ ⇒
size < load factor

／ ／

Unrelated elements are moved!
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Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);
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Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

No production compiler can propagate 10 to the 
print statement
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Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

Simple operations → complex memory behavior.



69

Motivation
What are the consequences?

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

!=

Complex memory behavior blocks optimizations!
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Motivations
Constant Folding Rarely Succeeds with Memory Operations

Figure: Breakdown of attempts to perform constant folding.
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Motivation
Collections are Prematurely Lowered.

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program
Collections being lowered here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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Motivation
Collections are Prematurely Lowered.

Developer Program
Impl.

Executable IR

IR

Middle 
End

Program

Blocks optimizations here.

Collections being lowered here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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Library
Implementation

Insights
Stems from premature lowering to fixed implementations 
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IRSource
Program

Linking

…
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Library
Implementation

Insights
Stems from premature lowering to fixed implementations 
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IR

malloc
realloc
load
store
gep

Source
Program

Linking

…

The compiler is left with low-level memory 
operations
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Proposal
Progressively lower to MEMOIR before library 
implementation 

Source
Program MEMOIR Collections LLVM IR

Linking

Memory-Centric
Optimizations

Library
Impl.

…
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Proposal
Implement Memory Optimizations within the Compiler for 
Easy, Automatic Reuse

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Library
Impl.

…
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MEMOIR
The first SSA IR for data 
collections.
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Goals
Representing Data Collections in the Compiler

General-purpose
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Goals
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation
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Representation
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Representation
General-Purpose Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative
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Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

Representation
Most accesses to heap memory is for structured data
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Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

Representation
Most accesses to heap memory is for structured data
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Representation
General-Purpose Data Collections

List

Set

Map

Tree

Graph

Dense Array

Sparse Array

Sequential Associative
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id→ [2 ✕ id]

id → {id}

Tree

Representation
General-Purpose Data Collections

List

Set

Map
Graph

Dense Array

Sparse Array

Sequential Associative
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id→ [2 ✕ id]

ID → {ID}

Tree

Representation
General-Purpose Data Collections

List

Set

Map
Graph

Dense Array

Sparse Array

Sequential Associative Composition
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Representation
Decoupling Data from its Logical Organization

Example: Linked List
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Representation
Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

Index-value mapping:

Abstract away the memory used to logically organize the 
collection.
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Representation
Abstraction of Logical Organization

Associative
Uniqueness in index space

Sequential
Contiguous in index space

Map keys to values Map indices to values
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Representation
Abstraction of Logical Organization

Associative
Uniqueness in index space

Sequential
Contiguous in index space⊃

Additional properties of index space
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Representation
Takeaway

General-purpose

Multiple layouts → single abstraction

Structure and properties of data organization

+

=
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Amenable to Analysis

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation
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Amenable to Analysis

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation
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Analysis
Enabling Analysis with 
Intermediate Representations
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Analysis
Impact of Program Representation on Analysis

Program
a = 1
b = 2
c = a + b
b = c * 2
a = b - c

a

b

c

1

2

+*2

-
⇒

Data Flow Graph
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b

c

2

+*2

Analysis
Impact of Program Representation on Analysis

Program
a = 1
b = 2
c = a + b
b = c * 2
a = b - c

a1

-
⇒

Data Flow Graph

a can be defined by 
multiple operations
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2

b

c

*2

Analysis
Impact of Program Representation on Analysis

Program
a = 1
b = 2
c = a + b
b = c * 2
a = b - c

⇒

Data Flow Graph

+

a1

-

Which assignment to a is used 
by the + operation?
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Intermediate representations (IR) simplify 
analysis and transformation.

Analysis
Enabling Analysis with IR Design
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Analysis
Enabling Analysis with IR Design

Example: Static Single Assignment (SSA)

Intermediate representations (IR) simplify 
analysis and transformation.
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Each variable in program has a single definition

Analysis
Static Single Assignment (SSA)

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

a = 1
b = 2
c = a + b
b = c * 2
a = b - c
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a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

Analysis
Static Single Assignment (SSA)

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

Each variable use has referential transparency:
The variable can be replaced with its definition.
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a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

Analysis
Static Single Assignment (SSA)

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

We can easily resolve the ambiguous use of 
a by the + operation now!
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Analysis
Example: Constant Propagation

With referential transparency, constant 
propagation becomes trivial

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

⇒
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Analysis
Example: Constant Propagation

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

⇒

a = 1
b = 2
c = a + b
b’ = c * 2
a’ = b’ - c

With referential transparency, constant 
propagation becomes trivial
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Analysis
Example: Constant Propagation

a = 1
b = 2
c = a + b
b = c * 2
a = b - c

Each variable in program has a single definition

⇒

a = 1
b = 2
c = 1 + 2
b’ = c * 2
a’ = b’ - c

With referential transparency, constant 
propagation becomes trivial
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MEMOIR
Data Collections

An SSA collection variable is the only reference to that 
collection.
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SSA collections are immutable for their static lifetime.
A collection variable is a collection

MEMOIR
Data Collections

An SSA collection variable is the only reference to that 
collection.
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Collection-Aware

MEMOIR
Element-Level Operations

Conventional

allocate(# of bytes) allocate(# of elements)

Reason about elements instead of bytes.



114

Collection-Aware

MEMOIR
Element-Level Operations

Conventional

allocate(# of bytes)

reallocate(pointer, # of bytes)

allocate(# of elements)

insert(collection, index, ...)

remove(collection, index)

Whether a collection is growing or shrinking is explicit.
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Collection-Aware

MEMOIR
Element-Level Operations

Conventional

allocate(# of bytes)

reallocate(pointer, # of bytes)

access(pointer, offset in bytes)

allocate(# of elements)

insert(collection, index)

remove(collection, index)

access(collection, index)

Access explicitly references collection and element.
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Where scalar analysis and transformation fails.

LLVM IR, etc.

Constant Scalar 
Propagation
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... table = ...;

table[0] = 10;

table[1] = 20;

print(10);

Analysis
Element-Level analysis and transformation can prevail. 

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Constant Scalar 
Propagation
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Assoc<int,int> table = ...;... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar 
Propagation
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

Constant Scalar 
Propagation
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

Constant Scalar 
Propagation
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

Constant Scalar 
Propagation
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar 
Propagation
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Constant Scalar 
Propagation
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar 
Propagation
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Constant Scalar 
Propagation

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA

mcf 5 13
deepsjeng 2 14
LLVM opt 8 37

SSA Construction introduces new collections.
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Constant Scalar 
Propagation

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Construct a MEMOIR Program

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA Binary

mcf 5 13 5
deepsjeng 2 14 2
LLVM opt 8 37 8

SSA Destruction eliminates them, with no new copies!



127

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Performing a sparse data flow analysis on collections.

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar 
Propagation
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

Analysis
Propagate element-level constants to optimize the program.

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Constant Scalar 
Propagation

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲
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Analysis
Propagate element-level constants to optimize the program.

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = 10;

print(r);

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲
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Analysis
Generalizing scalar optimizations to operate on elements

GeneralizationConstant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR
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Analysis
Generalizing scalar optimizations to operate on elements

Live-Variable 
Analysis

Live-Range
Analysis

GeneralizationConstant Scalar 
Propagation

Constant Element 
Propagation

Generalization

LLVM IR, etc. MEMOIR
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Analysis
Generalizing scalar optimizations to operate on elements

Live-Variable 
Analysis

Dead Variable 
Elimination

Live-Range
Analysis

Dead Element 
Elimination

GeneralizationConstant Scalar 
Propagation

Constant Element 
Propagation

Generalization

Generalization

LLVM IR, etc. MEMOIR
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MEMO
IR

Evaluation
Production compilers provide negligible performance 
improvements on mcf_s.

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.
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Evaluation
MEMOIR provides significant performance improvements 
with several optimizations.

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR
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Evaluation
Example Application: mcf_s from SPEC2017
Quick sort accounts for ~40% of exec. time

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);
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Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);

Evaluation
Example Application: mcf_s from SPEC2017
Quick sort accounts for ~40% of exec. time

[0, end)

[0, K)
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[0, end)

Evaluation
Live Range Analysis propagates liveness information

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);
[0, K)
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[0, K)

Evaluation
Live Range Analysis propagates liveness information

Seq<T> sorted = qsort(in);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);
[0, K)
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[0, K)

[0, K)

Evaluation
Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);
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Evaluation
Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
v = READ(sorted, i);
if (v > threshold)

use(v);

Let’s zoom into the sort to see how this works.

[0, K)

[0, K)



141

Evaluation
Dead Element Elimination converts sort → partial sort!

Ti
m

e
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Ti
m

e



143

Evaluation
Dead Element Elimination converts sort → partial sort!
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m

e

Partition PartitionPivot
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Evaluation
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Evaluation
Dead Element Elimination converts sort → partial sort!
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Evaluation
Dead Element Elimination converts sort → partial sort!

☠ ☠☠ ☠ ☠

Ti
m

e

[0, k) Dead elements
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Evaluation
Dead Element Elimination converts sort → partial sort!

Identify and writes to dead elements

☠☠ ☠

☠ ☠ ☠ ☠☠

☠ ☠☠ ☠ ☠

Ti
m

e

[0, k) Dead elements
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Evaluation
Dead Element Elimination converts sort → partial sort!

Eliminate writes to dead elements

Ti
m

e

[0, k) Dead elements
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Evaluation
Dead Element Elimination converts sort → partial sort!

No primitive knowledge of sort!

Ti
m

e

[0, k) Dead elements
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Evaluation
MEMOIR reduces O(nlogn) operation to O(n+klogk), k << n

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR
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Analysis
Takeaway

Amenable to Analysis

Single Reference

Immutability

+

=
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Transformation
Enabling Transformations 
on Data Organization
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Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage
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Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

Associative collection → Sequential collection
Reduce memory usage, faster access
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Transformation
Data Organization Optimizations

Dead Field Elimination
Reduce memory usage

Associative collection → Sequential collection
Reduce memory usage, faster access

Field(s) of objects → Associative collection
Reduce memory usage, improve locality
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Optimization
Field Elision

type T = { a: i32, b: i32,            

           c: i32 }

x = new Seq<T>(N)

for (i=0..N) {

  x[i].a = ...

  x[i].b = ...

  if (...)

    x[i].c = ...

  }

}

Field 1

Field 2

Field 3
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Optimization
Field Elision

Field 1

Field 2

type T = { a: i32, b: i32 }            

c = new Assoc<&T, i32>(N)

x = new Seq<T>(N)

for (i=0..N) {

  x[i].a = ...

  x[i].b = ...

  if (...)

    c[x[i]] = ...

  }

}Replace the field with an associative collection
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Optimization
Field Elision

Field 1

Field 2

type T = { a: i32, b: i32 }            

c = new Assoc<&T, i32>(N)

x = new Seq<T>(N)

for (i=0..N) {

  x[i].a = ...

  x[i].b = ...

  if (...)

    c’ = INSERT(c, x[i])

  }

}Update the field uses
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Optimization
Field Elision

Field 1

Field 2

type T = { a: i32, b: i32 }            

c = new Assoc<&T, i32>(N)

x = new Seq<T>(N)

for (i=0..N) {

  x[i].a = ...

  x[i].b = ...

  if (...)

    c’ = INSERT(c, x[i])

  }

}Benefit: Field is only allocated if needed!
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Evaluation
MEMOIR optimizations reduce memory usage!

Figure: Maximum resident set size of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR
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Decoupling storage from organization

Transformation
Takeaway

Amenable to Transformation

+

=
Referential Transparency
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Amenable to Analysis

Overview
Representing Data Collections in the Compiler

General-purpose

Amenable to Transformation
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Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

MEMOIR

Middle 
End

Program Collections were lowered here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End
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Now, collections are lowered here.

Collections were lowered here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle 
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR
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More information is preserved here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle 
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR
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So, more optimizations can occur here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle 
End

Program More information is preserved here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR
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Developers and front-ends don’t need to 
worry about optimized memory layout here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle 
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR
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Because now the compiler can optimize it here.

Conclusion
What is a Collection-Oriented Definition of Compilation?

Developer Program
Impl.

Executable Low-Level
IR

Middle 
End

Program Developers and front-ends don’t need to 
worry about optimized memory layout here.

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR
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Conclusion
How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

github.com/arcana-lab/memoir
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Conclusion
How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

github.com/arcana-lab/memoir
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Conclusion
How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

Rust Mojo

More to come!…

github.com/arcana-lab/memoir
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Representing Data Collections for 
Analysis and Transformation
Tommy McMichen

www.mcmichen.cc

MEMOIR Repository
Developer Program

Impl.

Executable Low-Level
IR

Middle 
End

Program

Back
End

Back
End

Front
End

Front
End

Front
End

Back
End

MEMOIR
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Motivations
Most Heap Memory is for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Motivations
Most Reads from Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Motivations
Most Writes to Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Evaluation

MEMOIR requires reasonable compilation time

Benchmark

Compile Time (ms)

MEMOIR LLVM

-O0 -O3 -O0 -O3

mcf 70.6 776.4 20.9 663.2

deepsjeng 246.0 1867.6 34.8 852.8

LLVM opt 225.9 668.4 52.0 414.7
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mcf_s Execution Time with Pass Breakdown

Lower is better.

Figure 3: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.
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mcf_s Max RSS with Pass Breakdown

Lower is better.

Figure: Maximum resident set size usage of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.
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Global Value Numbering is conservative because of memory 
operations
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Sink is commonly blocked by memory operations
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mcf_s parallel speedup with DEE optimization


