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Outline

In today’s talk:

Evaluation
Demonstrate optimizations that are now 

possible with MEMOIR. 

Motivations
How Data Collections block compilers.

Proposal
Introduce MEMOIR: the first general-purpose 

SSA IR for Data Collections.
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Data Collection: 
A logical organization of data.
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Motivations

Most Accesses to Heap Memory are for Collections

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Motivations

Most Accesses to Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Data collection implementations 
introduce complex memory behavior.

The Problem
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Motivations

Complex Memory Behavior

Linked list TreeLinked data structures
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Motivations

Complex Memory Behavior
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size ≥ load factor? rehash!
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Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

Expanding data structures
Insert

Hash table

⇒

size < load factor

／
Unrelated element(s) are moved!

／ ／
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Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);
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Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

No production compiler can propagate 10 to the 
print statement
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Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

Simple operations → complex memory behavior.
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Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

!=

Complex memory behavior blocks optimizations!



23

Library
Implementation

Insights

Stems from premature lowering to fixed implementations 
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IRSource
Program

Linking

…



24

Library
Implementation

Insights

Stems from premature lowering to fixed implementations 
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IR

malloc
realloc
load
store
gep

Source
Program

Linking

…

The compiler is left with low-level memory 
operations
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Proposal

Progressively lower to MEMOIR before library 
implementation 

Source
Program MEMOIR Collections LLVM IR

Linking

Memory-Centric
Optimizations

Library
Impl.

…
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Proposal

Implement Memory Optimizations within the Compiler for 
Easy, Automatic Reuse

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Library
Impl.

…
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Proposal

In the paper:

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Define the representation: MEMOIR.

Demonstrate optimizations. Introduce lowering scheme.

Library
Impl.

…
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Representing data collections for analysis and 
transformation

MEMOIR
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MEMOIR

Goal: Provide a compiler intermediate representation with…

Unambiguous memory operations
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MEMOIR

Goal: Provide a compiler intermediate representation with…

Element-level analyzability

Unambiguous memory operations

Ability to transform memory layout 
of collections and single objects
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Element-level analyzability

Unambiguous memory operations

Ability to transform memory layout 
of collections and single objects

MEMOIR

Our Approach

Achieved by decoupling 

memory used to store data 

from memory used to 

logically organize data.
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MEMOIR

Decoupling Data from its Logical Organization

Example: Linked List
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MEMOIR

Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

Index-value mapping:

Abstract away the memory used to logically organize the 
collection.
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Associative
Uniqueness in index space

MEMOIR

Capture two common cases:
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Sequential
Contiguous in index space

Associative
Uniqueness in index space

MEMOIR

Capture two common cases:
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With this decoupling, we can analyze collections at the 
granularity of elements.

MEMOIR

Element-Level Analysis
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Where scalar analysis and transformation fails.

Constant Scalar 
Propagation

LLVM IR, etc.
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... table = ...;

table[0] = 10;

table[1] = 20;

print(10);

MEMOIR

Element-Level analysis and transformation can prevail. 

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);
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Assoc<int,int> table = ...;... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);
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MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);



47

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR
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... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA

mcf 5 13
deepsjeng 2 14
LLVM opt 8 37

SSA Construction introduces new collections
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Construct a MEMOIR Program

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA Binary

mcf 5 13 5
deepsjeng 2 14 2
LLVM opt 8 37 8

But SSA Destruction introduces no spurious copies!
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Performing a sparse data flow analysis on collections.

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR
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Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Propagate element-level constants to optimize the program.

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲
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MEMOIR

Propagate element-level constants to optimize the program.

Constant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table,  0, 10);

table2 = INSERT(table1, 1, 20);

r = 10;

print(r);

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲
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MEMOIR

Generalizing scalar optimizations to operate on collections and 
single objects with MEMOIR

GeneralizationConstant Scalar 
Propagation

Constant Element 
Propagation

LLVM IR, etc. MEMOIR
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MEMOIR

Generalizing scalar optimizations to operate on collections and 
single objects with MEMOIR

Live-Variable 
Analysis

Live-Range
Analysis

GeneralizationConstant Scalar 
Propagation

Constant Element 
Propagation

Generalization

LLVM IR, etc. MEMOIR
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MEMOIR

Generalizing scalar optimizations to operate on collections and 
single objects with MEMOIR

Live-Variable 
Analysis

Dead Variable 
Elimination

Live-Range
Analysis

Dead Element 
Elimination

GeneralizationConstant Scalar 
Propagation

Constant Element 
Propagation

Generalization

Generalization

LLVM IR, etc. MEMOIR
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MEMO
IR

Evaluation

Production compilers provide negligible performance 
improvements on mcf_s.

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.



60

Evaluation

MEMOIR provides significant performance improvements 
with several optimizations.

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR
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Evaluation

Example Application: mcf_s from SPEC2017
Quick sort accounts for ~40% of exec. time

Seq<T> sorted = qsort(in);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);
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[0, end)

Evaluation

Live Range Analysis propagates liveness information

[0, K)

Seq<T> sorted = qsort(in);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);
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[0, K)

[0, K)

Evaluation

Live Range Analysis propagates liveness information

Seq<T> sorted = qsort(in);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);
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[0, K)

[0, K)

Evaluation

Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);
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[0, K)

Evaluation

Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

With no primitive knowledge of sort!
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[0, K)

[0, K)

Evaluation

Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

With no primitive knowledge of sort!

See the paper for more details.
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Evaluation

MEMOIR reduces O(nlogn) operation to O(n+klogk), where k << n

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR
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Evaluation

MEMOIR optimizations reduce memory usage!

Figure: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR
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Conclusion

How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

github.com/arcana-lab/memoir
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Write a pass with our open source compiler

LLVM NOELLE
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Write a program using the MEMOIR toolchain

github.com/arcana-lab/memoir
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Conclusion

How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

Rust Mojo

More to come!…

github.com/arcana-lab/memoir
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www.mcmichen.cc

Representing Data 
Collections in an SSA Form
Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai, 
Atmn Patel, Simone Campanoni

github.com/arcana-lab/memoir
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Motivations

Most Heap Memory is for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Motivations

Most Reads from Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Motivations

Most Writes to Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.
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Evaluation

MEMOIR requires reasonable compilation time

Benchmark

Compile Time (ms)

MEMOIR LLVM

-O0 -O3 -O0 -O3

mcf 70.6 776.4 20.9 663.2

deepsjeng 246.0 1867.6 34.8 852.8

LLVM opt 225.9 668.4 52.0 414.7
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Motivations

Constant Folding Rarely Succeeds with Memory Operations

Figure 4: Breakdown of attempts to perform constant folding.



79

mcf_s Execution Time with Pass Breakdown

Lower is better.

Figure 3: Execution time of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.
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mcf_s Max RSS with Pass Breakdown

Lower is better.

Figure: Maximum resident set size usage of mcf_s with refspeed input. 
10 trials. Normalized to LLVM9.
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MEMOIR

Additional Optimizations

⤷ Dead Field Elimination

⤷ Field Elision
⤷ Converts fields of objects into local associative arrays when profitable

⤷ Key Folding
⤷ Converts associative arrays into sequences when possible

⇒

⇒

⇒
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Motivations

Linked Data Structures

⤷ Linked data structures are the root of undecidability for the memory 
aliasing problem1

⤷ Commonly used for fast insertion and deletion to lists

⤷ But this hides the underlying index space, blocking compiler optimizations

?

?

0 1 2 3 4 5

1G. Ramalingam. “The undecidability of aliasing.” ACM TOPLAS’94, Volume 16, Issue 5.
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⤷ Performance engineers employ manual memory optimizations at the 
source-level to improve memory performance and utilization

⤷ Short-lived objects are aggregated into the same, long-lived object

⤷ Alias analysis can only glean information about accesses to memory 
locations rather than memory objects

Motivations

Premature Memory Optimizations

Individual allocations

⇒
 Pool allocation

t0

t1

Same object?Time
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MEMOIR

Example C to MEMOIR Translation

int interp(size_t n, char in[n]) {
  int *stack = malloc(n*sizeof(int))
  size_t sp = 0;
  for (size_t i = 0; i < n; i++) {
    char tok = in[i];
    if (tok == '+') {
    int lhs = stack[sp--];
    int rhs = stack[sp--];
       stack[++sp] = lhs + rhs;
    } else if (tok >= '0'
             && tok <= '9') {
      stack[++sp] = (int)(tok - '0');
    }
  }
  return stack[sp];
}

def interp(size n, i8 in[n]) -> i32 {
  S0 = new Sequence<i32>(0)
  for (size i = 0; i < n; i++) {
    S1 = 𝟇(S0, S5)
    i8 tok = in[i]
    if (tok == '+') {
   i32 lhs = S0[end]
      S1 = USE(S0)
      S2 = S1[0..end-1] // pop
   i32 rhs = S2[end]
      S3 = USE(S2)
      S4 = S3[0..end-1] // pop
      i32 sum = lhs + rhs
      S5 = CONCAT(S4, [sum]) // push
    } else if (tok >= '0' &&
               tok <= '9') {
      i32 val = tok - ‘0’
      S6 = CONCAT(S1, [val]) // push
    }
    S7 = 𝟇(S5, S6)
  }
  i32 top = S7[end]
  return stack[sp];
}

⇒
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MEMOIR

Intermediate Representation

Data collections as first-class citizens

⤷ Collections are immutable and read-once
⤷ Their size and elements are fixed upon creation

⤷ New collections can be created by adding or removing elements from 
existing collections and modifying the elements of existing collections

⤷ Collections and their elements have static, strong types
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MEMOIR
General-Purpose Data Collections

List

Tree Graph

Set Map
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MEMOIR
General-Purpose Data Collections

List Set Map

Tree Graph

Sequential

Associative

Composition
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MEMOIR

Capture two common cases:

Hashtable

Association List

Bitmap

Linked List

Vector

Array
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MEMOIR

Capture two common cases:

Hashtable

Association List

Bitset

Linked List

Vector

Array

Sequential
⤷ Contiguous in index space

Associative
⤷ Distinctness in index space
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MEMOIR

Read-once Form

⤷ A read-once form is constructed by creating a new collection variable after 
each read

... = S0[%i]

S1 = USE𝜙(S0[%i], S0)

... = A0[%k]

A1 = USE𝜙(A0[%k], A0)
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MEMOIR

Data Flow of Collections

⤷ Collections may only be accessed via DEF-USE data flow
⤷ Cannot escape into memory locations
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MEMOIR

Object Types

⤷ User-defined product types are supported

⤷ Support for primitive types
⤷ Raw pointers are handled by the ptr type

⤷ Support for reference types
⤷ Nullable reference to a MEMOIR object of the given type

⤷ Additional constraints for field ordering and alignment can be specified

struct T {
  int x;
  float y;
  int *z;
  T *n;
};

type T = {
  x: i32,
  y: f32,
  z: ptr,
  n: &T
}

⇒
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MEMOIR

Objects

⤷ Objects are an instantiation of a given object type

@0 = new T

⤷ Fields are laid out according to the type
⤷ If packing or padding are needed, it must be explicit in the type definition
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MEMOIR

Field Arrays

⤷ Fields of an object are accessed via field arrays: an associative array from 
an object reference to the field’s value

FT.x = new Assoc<&T,i32>
FT.y = new Assoc<&T,f32>
FT.z = new Assoc<&T,ptr>
FT.n = new Assoc<&T,&T>

⤷ Decouples the memory layout of fields within an object from their access
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MEMOIR

Live-Variable Analysis

⤷ Determine if a variable is alive at a given program point

a = 1 ⊳ { a }

b = a + 1 ⊳ { a, b }

c = a * 2 ⊳ { b, c }

d = b + c ⊳ { d }
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MEMOIR

Live-Element Analysis

⤷ Determine if an element is alive at a given program point

a[0] = 1 ⊳ { a[0] }

a[1] = a[0] + 1 ⊳ { a[0], a[1] }

a[2] = a[0] * 2 ⊳ { a[1], a[2] }

a[3] = a[1] + a[2] ⊳ { a[3] }
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MEMOIR

Live-Element Analysis

⤷ Unlike scalars, the element index is not necessarily known at compile time:

a[i] = 1 ⊳ { a[i] }

a[j] = a[i] + 1 ⊳ { a[i], a[j] }

a[k] = a[i] * 2 ⊳ { a[i], a[j], a[k] }

a[x] = a[y] + a[z] ⊳ { a[i], a[j], a[k], a[x] }
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MEMOIR

Live-Range Analysis

⤷ Value range analysis informs us of elements that may be used:

a[i] = 1 ⊳ { a[i] }

a[j] = a[i] + 1 ⊳ { a[i], a[j] }

a[k] = a[i] * 2 ⊳ { a[i], a[j], a[k] }

a[x] = a[y] + a[z] ⊳ { a[i], a[j], a[k], a[x] }

2 41 3 50a

y

z
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MEMOIR

Live-Range Analysis

⤷ So we can determine live ranges of collection index spaces:

a[i] = 1 ⊳ { a[i] }

a[j] = a[i] + 1 ⊳ { a[i], a[j] }

a[k] = a[i] * 2 ⊳ { a[i], a[j], a[k] }

a[x] = a[y] + a[z] ⊳ { a[i], a[j], a[k], a[x] }

2 41 3 ☠☠a

y

z

live slice
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Evaluation

Example Application: mcf_s from SPEC2017
Quick sort accounts for 39.9% of exec. time

Time
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Evaluation

Live-Range Analysis reports only a portion of the result is 
needed.

☠ ☠☠ ☠ ☠

Live range Dead elements
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Evaluation

Dead Element Elimination converts Sort → Partial Sort

Live range Dead elements
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Evaluation

Dead Element Elimination converts Sort → Partial Sort

Live range Dead elements

With no primitive knowledge of sort!
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mcf_s parallel speedup with DEE optimization


