
Representing Data
Collections in an SSA Form
Tommy McMichen
CGO 2024

2

Outline

In today’s talk:

Motivations
How Data Collections block compilers.

3

Motivations
How Data Collections block compilers.

Outline

In today’s talk:

Proposal
Introduce MEMOIR: the first general-purpose

SSA IR for Data Collections.

4

Outline

In today’s talk:

Evaluation
Demonstrate optimizations that are now

possible with MEMOIR.

Motivations
How Data Collections block compilers.

Proposal
Introduce MEMOIR: the first general-purpose

SSA IR for Data Collections.

5

Data Collection:
A logical organization of data.

6

Motivations

Data Collection: A logical organization of data.

Sequential

List

Array

7

Motivations

Data Collection: A logical organization of data.

Sequential Associative

List

Array

Set

Map

{ }

8

Motivations

Data Collection: A logical organization of data.

Sequential Associative

List

Array

Set

Map

{ }
Tree

Graph

9

Motivations

Most Accesses to Heap Memory are for Collections

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

10

Motivations

Most Accesses to Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

11

Data collection implementations
introduce complex memory behavior.

The Problem

12

Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

13

Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

Introduce Aliasing
Problems

14

Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

Expanding data structures
Insert

Hash table

／

15

Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

Expanding data structures
Insert

Hash table

⇒

size < load factor

／

16

Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

Expanding data structures
Insert

Hash table

⇒

size < load factor

／

⇒

／ ／

size ≥ load factor? rehash!

17

Motivations

Complex Memory Behavior

Linked list TreeLinked data structures

Expanding data structures
Insert

Hash table

⇒

size < load factor

／
Unrelated element(s) are moved!

／ ／

18

Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

19

Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

20

Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20;
print(table[0]);

No production compiler can propagate 10 to the
print statement

21

Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

Simple operations → complex memory behavior.

22

Motivations

Expanding Data Structures block optimizations!

std::unordered_map<int, int> table = ...;

table[0] = 10;
table[1] = 20; realloc(table, ...);
print(table[0]); rehash(table);

!=

Complex memory behavior blocks optimizations!

23

Library
Implementation

Insights

Stems from premature lowering to fixed implementations
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IRSource
Program

Linking

…

24

Library
Implementation

Insights

Stems from premature lowering to fixed implementations
manually or via libraries

Manual
Optimizations

Optimized
Program

LLVM IR

malloc
realloc
load
store
gep

Source
Program

Linking

…

The compiler is left with low-level memory
operations

25

Proposal

Progressively lower to MEMOIR before library
implementation

Source
Program MEMOIR Collections LLVM IR

Linking

Memory-Centric
Optimizations

Library
Impl.

…

26

Proposal

Implement Memory Optimizations within the Compiler for
Easy, Automatic Reuse

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Library
Impl.

…

27

Proposal

In the paper:

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Library
Impl.

…

Define the representation: MEMOIR.

28

Proposal

In the paper:

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Demonstrate optimizations.

Library
Impl.

…

Define the representation: MEMOIR.

29

Proposal

In the paper:

Source
Program MEMOIR Collections LLVM IR

Memory-Centric
Optimizations

Define the representation: MEMOIR.

Demonstrate optimizations. Introduce lowering scheme.

Library
Impl.

…

30

Representing data collections for analysis and
transformation

MEMOIR

31

MEMOIR

Goal: Provide a compiler intermediate representation with…

Unambiguous memory operations

32

MEMOIR

Goal: Provide a compiler intermediate representation with…

Element-level analyzability

Unambiguous memory operations

33

MEMOIR

Goal: Provide a compiler intermediate representation with…

Element-level analyzability

Unambiguous memory operations

Ability to transform memory layout
of collections and single objects

34

Element-level analyzability

Unambiguous memory operations

Ability to transform memory layout
of collections and single objects

MEMOIR

Our Approach

Achieved by decoupling

memory used to store data

from memory used to

logically organize data.

35

MEMOIR

Decoupling Data from its Logical Organization

Example: Linked List

36

MEMOIR

Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

37

MEMOIR

Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

Index-value mapping:

38

MEMOIR

Decoupling Data from its Logical Organization

Example: Linked List

0 1 2 3Index space:

Index-value mapping:

Abstract away the memory used to logically organize the
collection.

39

Associative
Uniqueness in index space

MEMOIR

Capture two common cases:

40

Sequential
Contiguous in index space

Associative
Uniqueness in index space

MEMOIR

Capture two common cases:

41

With this decoupling, we can analyze collections at the
granularity of elements.

MEMOIR

Element-Level Analysis

42

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Where scalar analysis and transformation fails.

Constant Scalar
Propagation

LLVM IR, etc.

43

... table = ...;

table[0] = 10;

table[1] = 20;

print(10);

MEMOIR

Element-Level analysis and transformation can prevail.

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

44

Assoc<int,int> table = ...;... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

45

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

46

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

47

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

48

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

49

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

50

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

... table = ...;

table[0] = 10;

table[1] = 20;

print(table[0]);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

51

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA

mcf 5 13
deepsjeng 2 14
LLVM opt 8 37

SSA Construction introduces new collections

52

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Construct a MEMOIR Program

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Benchmark

Number of Collections

Source SSA Binary

mcf 5 13 5
deepsjeng 2 14 2
LLVM opt 8 37 8

But SSA Destruction introduces no spurious copies!

53

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Performing a sparse data flow analysis on collections.

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

54

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = READ(table2, 0)

print(r);

MEMOIR

Propagate element-level constants to optimize the program.

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

55

MEMOIR

Propagate element-level constants to optimize the program.

Constant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

Assoc<int,int> table = ...;

table1 = INSERT(table, 0, 10);

table2 = INSERT(table1, 1, 20);

r = 10;

print(r);

{ } ⊲

{ 0→10 } ⊲

{ 0→10, 1→20 } ⊲

56

MEMOIR

Generalizing scalar optimizations to operate on collections and
single objects with MEMOIR

GeneralizationConstant Scalar
Propagation

Constant Element
Propagation

LLVM IR, etc. MEMOIR

57

MEMOIR

Generalizing scalar optimizations to operate on collections and
single objects with MEMOIR

Live-Variable
Analysis

Live-Range
Analysis

GeneralizationConstant Scalar
Propagation

Constant Element
Propagation

Generalization

LLVM IR, etc. MEMOIR

58

MEMOIR

Generalizing scalar optimizations to operate on collections and
single objects with MEMOIR

Live-Variable
Analysis

Dead Variable
Elimination

Live-Range
Analysis

Dead Element
Elimination

GeneralizationConstant Scalar
Propagation

Constant Element
Propagation

Generalization

Generalization

LLVM IR, etc. MEMOIR

59

MEMO
IR

Evaluation

Production compilers provide negligible performance
improvements on mcf_s.

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

60

Evaluation

MEMOIR provides significant performance improvements
with several optimizations.

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR

61

Evaluation

Example Application: mcf_s from SPEC2017
Quick sort accounts for ~40% of exec. time

Seq<T> sorted = qsort(in);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

62

[0, end)

Evaluation

Live Range Analysis propagates liveness information

[0, K)

Seq<T> sorted = qsort(in);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

63

[0, K)

[0, K)

Evaluation

Live Range Analysis propagates liveness information

Seq<T> sorted = qsort(in);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

64

[0, K)

[0, K)

Evaluation

Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

65

[0, K)

[0, K)

Evaluation

Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

With no primitive knowledge of sort!

66

[0, K)

[0, K)

Evaluation

Dead Element Elimination converts sort → partial sort!

Seq<T> sorted = qsort’(in, 0, K);

for (i = 0 to K)
r = READ(sorted, i);
if (r > threshold)

use(r);

With no primitive knowledge of sort!

See the paper for more details.

67

Evaluation

MEMOIR reduces O(nlogn) operation to O(n+klogk), where k << n

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR

68

Evaluation

MEMOIR optimizations reduce memory usage!

Figure: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

Lower is better.

MEMO
IR

69

Conclusion

How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

github.com/arcana-lab/memoir

70

Conclusion

How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

github.com/arcana-lab/memoir

71

Conclusion

How can I use MEMOIR today?

Write a pass with our open source compiler

LLVM NOELLE

C C++

Write a program using the MEMOIR toolchain

Rust Mojo

More to come!…

github.com/arcana-lab/memoir

72

www.mcmichen.cc

Representing Data
Collections in an SSA Form
Tommy McMichen, Nathan Greiner, Peter Zhong, Federico Sossai,
Atmn Patel, Simone Campanoni

github.com/arcana-lab/memoir

73

74

Motivations

Most Heap Memory is for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

75

Motivations

Most Reads from Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

76

Motivations

Most Writes to Heap Memory are for Structured Data

Figure: Breakdown of bytes read and written for each memory class in SPECINT 2017.

77

Evaluation

MEMOIR requires reasonable compilation time

Benchmark

Compile Time (ms)

MEMOIR LLVM

-O0 -O3 -O0 -O3

mcf 70.6 776.4 20.9 663.2

deepsjeng 246.0 1867.6 34.8 852.8

LLVM opt 225.9 668.4 52.0 414.7

78

Motivations

Constant Folding Rarely Succeeds with Memory Operations

Figure 4: Breakdown of attempts to perform constant folding.

79

mcf_s Execution Time with Pass Breakdown

Lower is better.

Figure 3: Execution time of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

80

mcf_s Max RSS with Pass Breakdown

Lower is better.

Figure: Maximum resident set size usage of mcf_s with refspeed input.
10 trials. Normalized to LLVM9.

81

MEMOIR

Additional Optimizations

⤷ Dead Field Elimination

⤷ Field Elision
⤷ Converts fields of objects into local associative arrays when profitable

⤷ Key Folding
⤷ Converts associative arrays into sequences when possible

⇒

⇒

⇒

82

Motivations

Linked Data Structures

⤷ Linked data structures are the root of undecidability for the memory
aliasing problem1

⤷ Commonly used for fast insertion and deletion to lists

⤷ But this hides the underlying index space, blocking compiler optimizations

?

?

0 1 2 3 4 5

1G. Ramalingam. “The undecidability of aliasing.” ACM TOPLAS’94, Volume 16, Issue 5.

83

⤷ Performance engineers employ manual memory optimizations at the
source-level to improve memory performance and utilization

⤷ Short-lived objects are aggregated into the same, long-lived object

⤷ Alias analysis can only glean information about accesses to memory
locations rather than memory objects

Motivations

Premature Memory Optimizations

Individual allocations

⇒
 Pool allocation

t0

t1

Same object?Time

84

MEMOIR

Example C to MEMOIR Translation

int interp(size_t n, char in[n]) {
 int *stack = malloc(n*sizeof(int))
 size_t sp = 0;
 for (size_t i = 0; i < n; i++) {
 char tok = in[i];
 if (tok == '+') {
 int lhs = stack[sp--];
 int rhs = stack[sp--];
 stack[++sp] = lhs + rhs;
 } else if (tok >= '0'
 && tok <= '9') {
 stack[++sp] = (int)(tok - '0');
 }
 }
 return stack[sp];
}

def interp(size n, i8 in[n]) -> i32 {
 S0 = new Sequence<i32>(0)
 for (size i = 0; i < n; i++) {
 S1 = 𝟇(S0, S5)
 i8 tok = in[i]
 if (tok == '+') {
 i32 lhs = S0[end]
 S1 = USE(S0)
 S2 = S1[0..end-1] // pop
 i32 rhs = S2[end]
 S3 = USE(S2)
 S4 = S3[0..end-1] // pop
 i32 sum = lhs + rhs
 S5 = CONCAT(S4, [sum]) // push
 } else if (tok >= '0' &&
 tok <= '9') {
 i32 val = tok - ‘0’
 S6 = CONCAT(S1, [val]) // push
 }
 S7 = 𝟇(S5, S6)
 }
 i32 top = S7[end]
 return stack[sp];
}

⇒

85

MEMOIR

Intermediate Representation

Data collections as first-class citizens

⤷ Collections are immutable and read-once
⤷ Their size and elements are fixed upon creation

⤷ New collections can be created by adding or removing elements from
existing collections and modifying the elements of existing collections

⤷ Collections and their elements have static, strong types

86

MEMOIR
General-Purpose Data Collections

List

Tree Graph

Set Map

87

MEMOIR
General-Purpose Data Collections

List Set Map

Tree Graph

Sequential

Associative

Composition

88

MEMOIR

Capture two common cases:

Hashtable

Association List

Bitmap

Linked List

Vector

Array

89

MEMOIR

Capture two common cases:

Hashtable

Association List

Bitset

Linked List

Vector

Array

Sequential
⤷ Contiguous in index space

Associative
⤷ Distinctness in index space

90

MEMOIR

Read-once Form

⤷ A read-once form is constructed by creating a new collection variable after
each read

... = S0[%i]

S1 = USE𝜙(S0[%i], S0)

... = A0[%k]

A1 = USE𝜙(A0[%k], A0)

91

MEMOIR

Data Flow of Collections

⤷ Collections may only be accessed via DEF-USE data flow
⤷ Cannot escape into memory locations

92

MEMOIR

Object Types

⤷ User-defined product types are supported

⤷ Support for primitive types
⤷ Raw pointers are handled by the ptr type

⤷ Support for reference types
⤷ Nullable reference to a MEMOIR object of the given type

⤷ Additional constraints for field ordering and alignment can be specified

struct T {
 int x;
 float y;
 int *z;
 T *n;
};

type T = {
 x: i32,
 y: f32,
 z: ptr,
 n: &T
}

⇒

93

MEMOIR

Objects

⤷ Objects are an instantiation of a given object type

@0 = new T

⤷ Fields are laid out according to the type
⤷ If packing or padding are needed, it must be explicit in the type definition

94

MEMOIR

Field Arrays

⤷ Fields of an object are accessed via field arrays: an associative array from
an object reference to the field’s value

FT.x = new Assoc<&T,i32>
FT.y = new Assoc<&T,f32>
FT.z = new Assoc<&T,ptr>
FT.n = new Assoc<&T,&T>

⤷ Decouples the memory layout of fields within an object from their access

95

MEMOIR

Live-Variable Analysis

⤷ Determine if a variable is alive at a given program point

a = 1 ⊳ { a }

b = a + 1 ⊳ { a, b }

c = a * 2 ⊳ { b, c }

d = b + c ⊳ { d }

96

MEMOIR

Live-Element Analysis

⤷ Determine if an element is alive at a given program point

a[0] = 1 ⊳ { a[0] }

a[1] = a[0] + 1 ⊳ { a[0], a[1] }

a[2] = a[0] * 2 ⊳ { a[1], a[2] }

a[3] = a[1] + a[2] ⊳ { a[3] }

97

MEMOIR

Live-Element Analysis

⤷ Unlike scalars, the element index is not necessarily known at compile time:

a[i] = 1 ⊳ { a[i] }

a[j] = a[i] + 1 ⊳ { a[i], a[j] }

a[k] = a[i] * 2 ⊳ { a[i], a[j], a[k] }

a[x] = a[y] + a[z] ⊳ { a[i], a[j], a[k], a[x] }

98

MEMOIR

Live-Range Analysis

⤷ Value range analysis informs us of elements that may be used:

a[i] = 1 ⊳ { a[i] }

a[j] = a[i] + 1 ⊳ { a[i], a[j] }

a[k] = a[i] * 2 ⊳ { a[i], a[j], a[k] }

a[x] = a[y] + a[z] ⊳ { a[i], a[j], a[k], a[x] }

2 41 3 50a

y

z

99

MEMOIR

Live-Range Analysis

⤷ So we can determine live ranges of collection index spaces:

a[i] = 1 ⊳ { a[i] }

a[j] = a[i] + 1 ⊳ { a[i], a[j] }

a[k] = a[i] * 2 ⊳ { a[i], a[j], a[k] }

a[x] = a[y] + a[z] ⊳ { a[i], a[j], a[k], a[x] }

2 41 3 ☠☠a

y

z

live slice

100

Evaluation

Example Application: mcf_s from SPEC2017
Quick sort accounts for 39.9% of exec. time

Time

101

Evaluation

Live-Range Analysis reports only a portion of the result is
needed.

☠ ☠☠ ☠ ☠

Live range Dead elements

102

Evaluation

Dead Element Elimination converts Sort → Partial Sort

Live range Dead elements

103

Evaluation

Dead Element Elimination converts Sort → Partial Sort

Live range Dead elements

With no primitive knowledge of sort!

104

mcf_s parallel speedup with DEE optimization

