
Saving Energy with Per-Variable Bitwidth Speculation

Tommy McMichen∗
Northwestern University

David Dlott∗
Northwestern University

Panitan
Wongse-ammat

Northwestern University

Nathan Greiner
Northwestern University

Hussain Khajanchi
Northwestern University

Russ Joseph
Northwestern University

Simone Campanoni
Northwestern University

Abstract

Tiny devices have become ubiquitous in people’s daily lives.
Their applications dictate tight energy budgets, but also re-
quire reasonable performance to meet user expectations. To
this end, the hardware of tiny devices has been highly opti-
mized, making further optimizations difficult. In this work,
we identify a missed opportunity: the bitwidth selection of
program variables. Today’s compilers directly translate the
bitwidth specified in the source code to the binary. However,
we observe that most variables do not utilize the full bitwidth
specified in the source code for the majority of execution.
To leverage this opportunity, we propose BitSpec: a system
that performs fine-grained speculation on the bitwidth of
program variables. BitSpec is implemented as a compiler-
architecture co-design, where the compiler transparently
reduces the bitwidth of program variables to their expected
needs and the hardware monitors speculative variables, re-
porting misspeculation to the software, which re-executes at
the original bitwidth, ensuring correctness. BitSpec reduces
energy consumption by 9.9% on average, up to 28.2%.

CCS Concepts: • Software and its engineering → Com-

pilers; • Computer systems organization→ Architec-

tures; Embedded systems.

ACM Reference Format:

Tommy McMichen, David Dlott, Panitan Wongse-ammat, Nathan
Greiner, Hussain Khajanchi, Russ Joseph, and Simone Campanoni.
2025. Saving Energy with Per-Variable Bitwidth Speculation . In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’25), March 30–April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3676641.3716271

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716271

1 Introduction

The fast approaching ubiquity of smart devices depends on
the evolution of low energy, general purpose CPUs capable
of delivering reasonable performance. Next-generation ap-
plications like wearable devices, brain activity trackers, and
insect-inspired microbots require ultra-low power proces-
sors to provide essential functionality while still maintaining
performance to ensure user satisfaction. While specializa-
tion in the form of a burgeoning list of fixed [9, 10, 13, 26]
and programmable [22, 32, 43] accelerators can provide un-
paralleled power-performance benefits for dedicated tasks,
most systems still rely on general purpose CPUs to perform
critical system tasks, such as data transfer between accel-
erators, file system management and communication with
larger networks. These core services are not provided by the
various accelerators, but are essential for their function. Pro-
viding performant, general-purpose compute capability with
tight energy constraints is becoming increasingly difficult
as Moore’s Law comes to an end.
At this point, most of the obvious inefficiencies at each

layer of the system stack have been thoroughly studied. The
best hope for unlocking additional energy savings lies in
mindful optimizations that span several layers of the system
stack. We identify one such opportunity for cross-cutting
optimization: the bitwidth of program variables.
The bitwidth of program variables has a cascading effect

on both the optimization space available to the compiler and
the efficient hardware utilization. In modern embedded pro-
gramming languages—such as C, C++ and Rust—the bitwidth
required for storing each program variable is specified by
the programmer. Compilers take this selection for granted
and, aside from a few trivial cases, propagate this bitwidth
decision during register allocation, where program variables
are mapped into registers capable of holding at least the
same number of bits. As a consequence of this, space in the
already-limited register file is reserved for bits that have
no impact on computation. If there are more variables than
available registers at a given program point, the compiler
must spill, allocating space on the stack and inserting load
and store instructions to access spilled variables. These in-
structions induce communication between the core and its
cache, increasing energy consumption from data movement
and stall cycles. Additionally, they increase the number of
dynamic instructions that must be executed and the number

https://doi.org/10.1145/3676641.3716271
https://doi.org/10.1145/3676641.3716271
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716271

of static instructions that must be resident in the instruction
cache. With this rigid treatment of variable bitwidths, the
compiler introduces cascading performance penalties and
energy consumption throughout the system.
These performance penalties arise from code developed

for the worst-case, using the data type that accommodates
the highest possible value for any input. Even worse, pro-
grammers with limited time or ability to perform manual
code optimizations and tuning are conservative, often using
the highest possible bitwidth. This raises the question: Is the
full bitwidth specified for variables by programmers typically
needed? Our results suggest the answer is a resounding no.
This paper introduces BitSpec, a compiler-architecture

co-design that speculates on the expected bitwidth of integer
variables. BitSpec unlocks the potential of the next genera-
tion of tiny devices by decoupling the programmer-specified
bitwidth of variables from the actual bitwidth required dur-
ing execution. With the BitSpec compiler, no changes to the
source code are needed, making BitSpec an automatic, trans-
parent technique. The compiler speculates on the expected
bitwidth needs of each variable in the program, reducing the
bitwidth of variables accordingly. These reduced bitwidth
variables are speculatively placed into 8-bit slices of a word-
length register, efficiently storing them. Because the run-time
values of these variables may exceed the size of their slice,
our hardware monitors them and reports misspeculation.
Upon misspeculation, the running binary will re-execute the
affected region at its original bitwidth, ensuring correctness.
This paper makes the following contributions:
• Evaluates the gap between programmer-selected bitwidth
and required bitwidth.

• Investigates speculative bitwidth selection techniques.
• Introduces a novel compiler-architecture co-design to effi-
ciently speculate on operations at reduced bitwidths and
proves that it maintains program correctness.

• Implements BitSpec on two ARM processors, one conven-
tional and one with state-of-the-art 𝜇architectural tech-
niques for energy savings on tiny devices.

• Evaluates BitSpec’s impact on energy consumption for
both processors using gate-level architecture simulation.

2 Bitwidth Selection

The programmer-selected bitwidth for variables has myriad
effects on the performance and energy usage of a program.
Today, these variables are placed in the register file using
at least the programmer-specified bitwidth. This leads to
inefficient use of the register file, as the programmer-selected
bitwidth is commonly much greater than bitwidth required
for computation. Figure 1b categorizes dynamic assignments
to integer variables in the LLVM IR by their programmer-
selected bitwidth, across benchmarks in the mibench suite.
We see 56 − 90% of dynamic assignments are made at 32-
and 64-bits. However, Figure 1a—which categorizes by the

required bitwidth—shows that 40− 100% of instructions need
only 8-bits. This stark contrast illustrates the gap between
the programmer-selected bitwidth, and the actual bitwidth
required for the computation. To describe this gap, we pose
the bitwidth selection problem.

2.1 The Bitwidth Selection Problem

Informally, the bitwidth selection problem minimizes the
number of extraneous bits used to store dynamically com-
puted values, while guaranteeing that the bitwidth is suffi-
cient to store the largest value seen at run-time. To do so, the
solution can perform bitwidth selection and other program
transformations, so long as correctness1 is maintained.

Definition. Given a program 𝑝 , produce an input-output
equivalent program 𝑝 ′ containing integer variables 𝑉 with
bitwidth selections 𝐵𝑊 : 𝑉 ↦→ N, where ⟨𝑣⟩ is the sequence
of dynamically computed values stored in 𝑣 ∈ 𝑉 :

minimize
𝐵𝑊

∑︁
𝑣∈𝑉

∑︁
𝑎∈⟨𝑣⟩

(
𝐵𝑊 (𝑣) − RequiredBits(𝑎)

)
subject to 𝐵𝑊 (𝑣) ≥ max

𝑎∈⟨𝑣⟩
RequiredBits(𝑎)

where RequiredBits(𝑎) � ⌊lg(𝑎) + 1⌋
Figure 1a shows the aggregate2 of RequiredBits, while Fig-
ure 1b shows the aggregate of 𝐵𝑊 in the original program.

2.2 Bitwidth Selection with Static Analysis

Multiple approaches to bitwidth selection using static analy-
sis exist [8, 38, 40], the most prominent being demanded bits
analysis—an implementation of which is available in LLVM.
Figure 1c evaluates LLVM’s demanded bits analysis where
𝐵𝑊 (𝑣) = DemandedBits(𝑣). While the approach does im-
prove upon the programmer-selected bitwidth—increasing
the mean usage of 8-bit assignments from 23% to 41%—it
fails to achieve the full potential, seen in Figure 1a. In some
cases, demanded bits analysis misses all opportunities, such as
sha, where it simply outputs the original bitwidth selection,
missing the opportunity for 42% 8-bit utilization.

2.3 Speculative Bitwidth Selection

With the static approach faltering in non-trivial cases, we
look down other avenues. Past work has explored specula-
tion at the coarse, basic-block granularity [34]. This solution
can be modeled in the bitwidth selection problem where
𝐵𝑊 (𝑣) = max𝑤∈BasicBlock(𝑣) 𝐵𝑊 (𝑤). We evaluate this ap-
proach by coercing the bitwidth selection of variables to
the maximum bitwidth seen within its basic block, the re-
sults of which are shown in Figure 1d. We find that, while
in some cases, such as stringsearch and dijkstra, this
coarse-granularity achieves the same selection as the in-
struction granularity, it misses out on opportunities in many
domains. This is primarily seen in security applications and

1It is assumed that the original bitwidth selection in 𝑝 is correct.
2All values obtained using the large input provided with MiBench.

2

Figure 1. Percentage of dynamic LLVM IR integer instructions at each bitwidth, using different bitwidth selection techniques. No existing
approach (b-d) is capable of reducing bitwidth utilization to the bitwidth actually required for each instruction (a).

Figure 2. By operating on reduced bitwidth values, BitSpec better
utilizes the register file, reducing stack usage.

all variants of susan, where 8-bit utilization is significantly
lower. This is especially prevalent on susan-corners, whose
8-bit utilization reduces from ∼70% to 5%. This results from
few high-bitwidth variables coercing a large number of low-
bitwidth variables to their worst-case bitwidth.

2.4 Our Approach

Seeing the limitations of prior work, we propose BitSpec:
an approach to the bitwidth selection problem via profile-
guided, speculative bitwidth selection, per-instruction spec-
ulation, and a compiler-architecture co-design to efficiently
handle misspeculation. At the core of this approach is the
ability to speculatively reduced the bitwidth of individual
variables for storage and computation. Doing so drastically
reduces variable spillage, reversing the current that caused
the cascade of issues described in §1. In the remainder of this
section, we illustrate how BitSpec remedies the ailments of
poor bitwidth selection and unlocks new energy savings.

2.5 How Does Bitwidth Selection Impact Efficiency?

As stated in §1, the bitwidth of program variables has a
cascading effect on both efficient hardware utilization and
the optimization space available to compilers. In this section
we will provide more detailed examples where solving the
bitwidth selection problem improves program efficiency.

Better use of the register file. Reducing the bitwidth of
program variables reduces cache accesses by fitting more,
lower bitwidth, variables into the same register file. Consider
the example in Figure 2, where the architecture has two 32-
bit registers that can only be accessed at 32-bits, as is the case
for ARM-based architectures. In this case only two variables
can be mapped to registers at any given time while every

Figure 3. Loop unrolling reduces the number of IR instructions
executed, but increases assembly instructions.

other variable is spilled onto the stack. These spills generate
additional load and store instructions to access the variables,
increasing cache accesses and requiring more instructions
be resident in the instruction cache. When the bitwidth of
variables is reduced to 8 bits, a new opportunity arises: the
compiler can map multiple values into each of these conven-
tional registers. If we are able to reduce variables to 8 bits, we
can pack up to four times as many variables into a conven-
tional 32-bit register. This significantly reduces the number
of spilled variables, removing costly memory instructions.

Enable conventional compiler optimizations. Compil-
ers rely upon transformations such as loop unrolling and
function inlining to unlock additional opportunities for opti-
mization. We refer to these transformations as expanders, as
they expand the size of the program by instantiating dynamic
code paths as static control flow. Figure 3 shows an example
of the benefits unlocked by loop unrolling, monotonically
reducing the number of dynamic IR instructions executed as
loops are unrolled more. However, compilers do not typically
unroll loops more than a few times as performance of the
assembly quickly degrades. This can be seen in Figure 3, as
an unrolling factor of 4 or greater results in an increase in
executed assembly instructions. One major cause of this is in-
creased register pressure [42], which has no modern solution
aside from increased register file size. BitSpec ameliorates
this increased register pressure by packing more variables
into the register file, allowing it to reap the benefits.

3 BitSpec: Speculative Bitwidth Selection

To perform fine-grain, speculative bitwidth selection, we
propose a combination of profile-guided bitwidth selection
with compiler-architecture co-designed speculation Figure 4.

3

Figure 4. The BitSpec compilation pipeline, specialized compo-
nents are annotated with their section number.

Before going into detail, we will walk through an example
of compiling and running the following program:� �
1 uint32_t x = 0;
2 do { x += 1; } while (x <= 255);
3 return;� �
BitSpec uses the off-the-shelf clang front-end to compile

C/C++ programs to LLVM’s intermediate representation (IR).� �
1 ENTRY: br BODY
2 BODY:
3 %x0 = phi i32 [0, %ENTRY], [%x1, %BODY]
4 %x1 = add i32 %x0, 1
5 %check = cmp ule i32 %x1, 255
6 br i1 %check , label %BODY , label %EXIT
7 EXIT: ret� �
The profiler (§3.2.2) runs the program on representative

inputs to generate statistics about the bitwidth needs of each
variable. For example, the average number of bits needed to
store the result of x0 and x1 is 8 bits. These statistics are used
to produce a speculative bitwidth selection, in this example
we will use the average number of bits.

The squeezer (§3.2.3) transforms variables to utilize their
speculative bitwidth selection, and injects software-based
speculation handling. Speculation handling is supported by
our IR extensions (§3.1), which allow us to specify the basic
block to jump into upon misspeculation (line 2).� �
1 ENTRY: br BODY
2 BODY: handler = HANDLER
3 %x0 = phi i8 [0, %ENTRY], [%x1, %BODY]
4 %x1 = add i8 %x0, 1 !speculative
5 %check = cmp ule i8 %x1, 255
6 br i1 %check , label %BODY , label %EXIT
7 EXIT: ret
8 HANDLER:
9 %x2 = zext %x0 to i32
10 br BODY2
11 BODY2:
12 %x3 = phi i32 [%x2, %HANDLER], [%x4, %BODY2]
13 %x4 = add i32 %x3, 1
14 %check2 = cmp ule i32 %x4, 255
15 br i1 %check2 , label %BODY2 , label %EXIT2
16 EXIT2: ret� �
Finally, the back-end (§3.3) lowers the IR to a binary, using

our ISA extensions (§3.4) and generates code necessary for
the 𝜇architecture (§3.5) to detect misspeculation and redirect
execution to the handler. When our example program is run,
we get the following execution state at the end of each dy-
namically executed basic block (empty cells are undefined):

tim
e

y

Block x0 x1 x2 x3 x4
ENTRY
BODY 0 1
BODY 1 2...

...
...

BODY 254 255
BODY 255 misspec!

HANDLER 255 255
BODY2 255 255 256
EXIT2

When is BitSpec applicable? Broadly, BitSpec bene-
fits programs where programmers cannot safely reduce the
bitwidth of variables due to outliers or uncertainty in the
range of input values. An example of this is stringsearch,
whose hot code is shown in Listing 1. In this code, the ma-
jority of operations are on values of type size_t (64 bits on
our target architecture), reflecting Figure 1b. However, in
the provided input, the maximum length of pat and str are
12 and 56, respectively, which can be stored in 8 bits. By
speculating on the bitwidth of these variables, the function
can be transformed to speculatively operate on entirely 8-
bit integers. There is a similar pattern in CRC32, where the
length of each line in the provided input file varies from 0 to
2729, with an average of 145.8. In this case, the majority of
execution can occur at 8-bits, with speculation handling the
outliers where 𝑙𝑒𝑛𝑔𝑡ℎ > 255.

Listing 1. Hot code from stringsearch.� �
1 char *strsearch(char *pat , char *str) {
2 size_t patlen = strlen(pat); // 0 < patlen <= 12
3 size_t strlen = strlen(str); // 0 < strlen <= 56
4 size_t pos = patlen - 1; // 12 <= pos <= 56
5 while (pos < patlen) {
6 while (pos < strlen && table[str[pos]] > 0)
7 pos += table[str[pos]];
8 ... } ... }� �
When is BitSpec limited? Some code patterns are not

amenable to the BitSpec execution model due to design
decisions. Small, recursive functions exacerbate the cost of
misspeculation where, in the worst case, the function body
will be executed twice per invocation. At the other extreme,
large functions lead to missed opportunities because, follow-
ing a single misspeculation, the remainder of the function is
executed at its original bitwidth.

3.1 Representing Speculation in the Compiler

The BitSpec compiler speculatively lowers the bitwidth of
variables. As a consequence, the compiler needs to differ-
entiate between variables whose bitwidths are speculative
and those that are not. Today, compiler intermediate repre-
sentations provide no support for representing this type of
speculation. To this end, we introduce speculative regions, a
minor addition to the compiler’s intermediate representa-
tion. While it can be generalized, we will describe it in the
context of LLVM’s middle-end IR [18] and back-end Machine
IR (MIR) [19]. We refer to our extended forms as Speculative
IR (SIR) and Speculative Machine IR (SMIR)3.

3Pronounced seer and smear, respectively.
4

3.1.1 Speculative Regions. A speculative region (𝑆𝑅) is
a single entry, single exit [25] sequence of basic blocks (𝐵𝐵).
Entry : 𝑆𝑅 → 𝐵𝐵 gives the first basic block in the sequence.
The shaded box containing B.nonphis at the bottom of Fig-
ure 6 is an example of a speculative region. Each speculative
region has a single handler, i.e., a basic block that will be
invoked iff an instruction in the speculative region misspec-
ulates, which can be queried: Handler : 𝑆𝑅 → 𝐵𝐵. A basic
block can only be the handler for a single speculative region.
A handler cannot be contained within a speculative region.
Finally, handlers cannot be the target of any branches, as
they can only be entered upon misspeculation.
Conceptually, speculative regions can be thought of as

try blocks in exception handling (EH). However, in practice,
exceptions can only be thrown between functions, which is
too coarse grained for our use case. One could implement
speculative regions using existing EH support in LLVM, by
outlining them into their own function. However, this intro-
duces extra code that, in our prototype, we could not safely
remove without inducing a large overhead.

3.1.2 Speculative IR (SIR) extends LLVM IR by introduc-
ing speculative regions and modifying how predecessors
of basic blocks are computed. SIR solely extends LLVM IR,
so any valid LLVM IR program is a valid SIR program. To
allow for usage of previously-defined variables in handlers—
and prohibit usage of possibly misspeculated variables—their
predecessors are computed as follows:

Preds(Handler(SR)) = Preds(Entry(SR)) (1)
Figure 6 demonstrates: handler.B has B.phis as a predecessor
without being the target of a branch from it. This predecessor
relation will be used to prove that all values from the current
speculative region will be dead upon entering the handler.

3.1.3 Speculative Machine IR (SMIR) extends SIR:
1. SMIR contains both virtual and physical registers.
2. SMIR contains machine-specific operations.

Since physical registers in SMIR are not SSA, they need to
be properly managed by the register allocator in case of
misspeculation. To accomplish this, the predecessors of a
misspeculation handler in SMIR are computed as:

Preds(Handler(SR)) =
⋃

MBB∈SR
MBB (2)

3.2 Speculatively Reducing the Bitwidth of Variables

The BitSpec compiler’s middle-end operates on SIR and
consists of the expander, bitwidth profiler and squeezer.

3.2.1 Expander. Per §2.5, expanding the code unlocks
compiler optimizations. To exploit this, we introduce the ex-
pander, a middle-end compiler pass that aggressively applies
function inlining and loop unrolling using NOELLE [30].
To explore the limit of expansion the baseline architec-

ture is capable of handling, we tune the expander with an
auto tuner [2] to achieve the best performance—reduction

in dynamic instructions executed—on the baseline architec-
ture. The search space of the auto tuner is: unrolling factor,
max function size, and max loop size. The unrolling factor
dictates the max number of times any loop in the target pro-
gram will be unrolled. The max function size and max loop
size dictate the max number of static instructions allowed in
any function or loop when unrolling and inlining. We per-
form this tuning offline—a total of 10 days for our evaluation
(§4)—with a single output configuration for all benchmarks.

3.2.2 Bitwidth Profiler. The profiler begins by gathering
bitwidth utilization statistics. For each variable, we record
the maximum (𝑀𝐴𝑋), minimum (𝑀𝐼𝑁) and average (𝐴𝑉𝐺)
bitwidth required during execution. The average bitwidth
requirement of a SIR variable is computed as follows:

AVG(𝑣) = 1
|⟨𝑣⟩|

∑︁
𝑎∈⟨𝑣⟩

RequiredBits(𝑎)

With these statistics, the profiler produces target bitwidth
selections 𝑇 : 𝑉 → N. In this paper we explore 𝑇 = 𝑀𝐴𝑋 ,
𝑇 = 𝐴𝑉𝐺 , and𝑇 = 𝑀𝐼𝑁 as heuristics. By varying the heuris-
tic, we tune aggressiveness: a heuristic is more aggressive if
it produces lower bitwidth selections. Figure 5 shows the
aggregate bitwidth selections of our heuristics.

However, 𝑇 cannot be directly used as bitwidth selections
for the program. There are a few reasons for this. First, simi-
larly to LLVM IR, SIR requires that all operands of an instruc-
tion have the same bitwidth. Second, not all instructions can
be directly mapped to speculative operations in the ISA, the
existence of an operation can be queried with Speculative?.
Third, not all instructions are idempotent: they cannot be
executed any number of times without side effects. Idem-
potency of an instruction can be queried with Idempotent?,
discussed in §3.2.3. Finally, we must be able to extend the
result to its original bitwidth, 𝑂 : 𝑉 → N, and obtain the
same value that the original program would have computed.
To accommodate these caveats, we will apply constraints to
𝑇 to produce the bitwidth selection 𝐵𝑊 : 𝑉 → N.

We apply these constraints with the Squeezable? relation,
where Def maps variables to their defining instruction.
Squeezable?(𝑣 = 𝑜𝑝 𝑣0, ... 𝑣𝑛) ⇐⇒ Speculative?(𝑜𝑝)

∧ Idempotent?(Def (𝑣))
∧ extend 𝑣 to 𝑂 (𝑣) ≡ Orig(𝑣)

(3)

We then compute the bitwidth selection, 𝐵𝑊 :

𝐵𝑊 (𝑣) =

max

(
𝑇 (𝑣), max

𝑢∈Operands(𝑖)
𝑇 (𝑢)

)
Squeezable?(𝑖)

𝑂 (𝑣) otherwise
where 𝑖 = Def (𝑣)

3.2.3 Squeezer. With the profiler’s bitwidth selection 𝐵𝑊

in hand, the compiler then invokes the squeezer, which spec-
ulatively reassigns the bitwidth of variables and injects the
appropriate misspeculation handling. The squeezer creates

5

Figure 5. Percent of dynamic integer instructions the profiler classifies as 8, 16 or 32 bits when 𝑇 = 𝑀𝐴𝑋,𝐴𝑉𝐺,𝑀𝐼𝑁 , respectively.

Figure 6. The squeezer takes a function (top) and applies 1 – 3 .
Note that after 3 B.phis is the sole predecessor of handler.B,
from the extended definition of predecessors in SIR(§3.1.2).

a function where, once misspeculation occurs, live variables
are extended to their original bitwidth and the basic block
where misspeculation occurred is re-executed at its original
bitwidth. Following this, execution resumes at the original
bitwidth specified by the developer until the end of the func-
tion. A visualization of each pass taken by the squeezer can
be seen in Figure 6. The squeezer operates in three passes:
1 Prepares the control-flow graph (CFG).
2 Speculatively reduces the bitwidth of variables, inserting

speculative regions as needed.
3 Inserts handlers for each speculative region.

1 CFG Preparation. To prepare the program, we trans-
form the CFG [1] of each function.

First, basic blocks are split such that, ∀𝐵𝐵 ∈ Function:
|{𝑙 ∈ 𝐵𝐵 | 𝑙 isa load}| ≥ |{𝑠 ∈ 𝐵𝐵 | 𝑠 isa store}| = 0

∨ |{𝑠 ∈ 𝐵𝐵 | 𝑠 isa store}| ≥ |{𝑙 ∈ 𝐵𝐵 | 𝑙 isa load}| = 0 (4)

|{𝑖 ∈ 𝐵𝐵 | 𝑖 is volatile, 𝑖 isa call}| = |𝐵𝐵 | = 1
∨ |{𝑖 ∈ 𝐵𝐵 | 𝑖 is volatile, 𝑖 isa call}| = 0 (5)

|{𝑝 ∈ 𝐵𝐵 | 𝑝 isa 𝜙}| = |𝐵𝐵 |
∨ |{𝑛 ∈ 𝐵𝐵 | ¬(𝑛 isa 𝜙)}| = |𝐵𝐵 | (6)

To safely re-execute basic blocks upon misspeculation, we
must guarantee that speculation only occurs in idempotent
basic blocks. We do this as prescribed by prior work [12],
splitting basic blocks such that no write-after-read (WAR)
dependencies exist within a basic block with equation (4). Be-
yond WAR dependencies, a basic block is non-idempotent iff
it contains a non-idempotent instruction, e.g. I/O operations,
which are represented in SIR as either volatile instructions or
calls. Equation (5) guarantees that basic blocks contain either
idempotent or non-idempotent instructions. Therefore, we
can query whether or not a basic block is idempotent:
Idempotent?(𝐵𝐵) ⇐⇒ ∀𝑖 ∈ 𝐵𝐵,¬(𝑖 is volatile∨𝑖 isa call)

Equation (6) ensures that basic blocks contain either 𝜙 or
non-𝜙 instructions, but not both. This guarantees that no 𝜙
instructions are involved in misspeculation handling except
for those injected by 3 , simplifying the transformation.
Finally, we transform the CFG to contain two disjoint

sub-graphs: 𝐶𝐹𝐺𝑜𝑟𝑖𝑔, containing all variables at their origi-
nal bitwidth, and 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 , containing variables assigned to
their speculative bitwidth. First, we clone all basic blocks
in the CFG, creating the set of originals 𝐶𝐹𝐺𝑜𝑟𝑖𝑔 and the set
of clones 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 . Spec : 𝐶𝐹𝐺𝑜𝑟𝑖𝑔 ↦→ 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 maps each
original basic block, instruction and variable to its clone. The
inverse, Orig : 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 ↦→ 𝐶𝐹𝐺𝑜𝑟𝑖𝑔 is also created. We then
replace the uses of all variables and basic blocks in 𝐶𝐹𝐺𝑠𝑝𝑒𝑐

with their clone using Spec. This guarantees that no variable
defined in 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 is used in 𝐶𝐹𝐺𝑜𝑟𝑖𝑔, and vice versa, with
no control path existing between them.

2 Speculatively reduce the bitwidth of variables. The
squeezer then uses the bitwidth selections, 𝐵𝑊 , produced
by the profiler to transform𝐶𝐹𝐺𝑠𝑝𝑒𝑐 . For each variable 𝑣 , we
speculatively cast the operands of its defining instruction to
𝐵𝑊 (𝑣), producing 𝑜𝑝 ′

1, ..., 𝑜𝑝
′
𝑛 . Then, a new definition 𝑣 ′ is

created with bitwidth 𝐵𝑊 (𝑣), taking 𝑜𝑝 ′
1, ..., 𝑜𝑝

′
𝑛 as operands.

All uses of 𝑣 are replaced with 𝑣 ′. If one does not already

6

exist, a speculative region 𝑆𝑅 is created for the basic block
containing 𝑣 ′ and the basic block is inserted into 𝑆𝑅. After
applying these steps to all speculative instructions, the orig-
inal instructions and extraneous speculative truncates are
removed via a simple dead code elimination.

3 Misspeculation Handling is then inserted. First, a
new basic block 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 is inserted for each speculative
region created by 2 and registered as its handler. The ter-
minator of 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 is set to an unconditional branch to
𝐵𝐵𝑜𝑟𝑖𝑔 = Orig(𝐵𝐵𝑠𝑝𝑒𝑐), guaranteeing:

∀𝑠 ∈ Succ(𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟), 𝑠 ∈ 𝐶𝐹𝐺𝑜𝑟𝑖𝑔 (7)
Let𝑉𝑜𝑟𝑖𝑔 be the set of variables live at the beginning of 𝐵𝐵𝑜𝑟𝑖𝑔 .
For each variable in 𝑉𝑜𝑟𝑖𝑔, create an extension of its specula-
tive clone to its original bitwidth in 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 , storing a map-
ping from the extension to the clone in Extended : 𝑉 ↦→ 𝑉 .
Then, a 𝜙 instruction is created in 𝐵𝐵𝑜𝑟𝑖𝑔, such that:

∀𝑣𝑜𝑟𝑖𝑔 ∈ 𝑉𝑜𝑟𝑖𝑔, 𝑣𝑒𝑥𝑡 = extend 𝑣 to 𝑂 (𝑣),

𝑣𝜙 = 𝜙

({
𝑣𝑒𝑥𝑡 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟

𝑣𝑜𝑟𝑖𝑔 𝐵𝐵𝑝𝑟𝑒𝑑

)
where 𝑣 = Spec(𝑣𝑜𝑟𝑖𝑔)

and Pred(𝐵𝐵𝑜𝑟𝑖𝑔) = {𝐵𝐵𝑝𝑟𝑒𝑑 }

(8)

All uses of 𝑣𝑜𝑟𝑖𝑔 dominated by 𝐵𝐵𝑜𝑟𝑖𝑔 are replaced with 𝑣𝜙 .
Additionally, create a basic block 𝐵𝐵𝑐𝑙𝑜𝑛𝑒 to hold clones of

all variables defined within the speculative region. The termi-
nator of 𝐵𝐵𝑐𝑙𝑜𝑛𝑒 is set to that of 𝐵𝐵𝑠𝑝𝑒𝑐 and the terminator of
𝐵𝐵𝑠𝑝𝑒𝑐 is set to an unconditional branch to 𝐵𝐵𝑐𝑙𝑜𝑛𝑒 . For each
variable 𝑣 ∈ 𝐵𝐵𝑠𝑝𝑒𝑐 live at the end of 𝐵𝐵𝑠𝑝𝑒𝑐 , create 𝑣𝑐𝑙𝑜𝑛𝑒 , a
𝜙 instruction in 𝐵𝐵𝑐𝑙𝑜𝑛𝑒 that takes 𝑣 as its value for the edge
from 𝐵𝐵𝑠𝑝𝑒𝑐 . Replace all uses of 𝑣 outside 𝐵𝐵𝑠𝑝𝑒𝑐 with 𝑣𝑐𝑙𝑜𝑛𝑒 .
This guarantees that all variables defined in 𝐵𝐵𝑠𝑝𝑒𝑐 are only
used within 𝐵𝐵𝑠𝑝𝑒𝑐 or on the exiting branch edge to 𝐵𝐵𝑐𝑙𝑜𝑛𝑒 :

∀𝑢 ∈ Uses(𝑣), 𝑢 ∈ 𝐵𝐵𝑠𝑝𝑒𝑐 ∨ 𝑢 ∈ Succ(𝐵𝐵𝑠𝑝𝑒𝑐),
where Succ(𝐵𝐵𝑠𝑝𝑒𝑐) = {𝐵𝐵𝑐𝑙𝑜𝑛𝑒 }

(9)

We will now prove that the above transformations pre-
serve program correctness. Informally, we will demonstrate
that, by construction, no variable defined within a specula-
tive region can be used by its handler nor 𝐶𝐹𝐺𝑜𝑟𝑖𝑔.

Theorem 3.1. Any variable defined within a speculative re-
gion is dead at the beginning of its handler.

Proof. Given a variable 𝑣𝑠𝑝𝑒𝑐 within basic block𝐵𝐵𝑠𝑝𝑒𝑐 within
speculative region 𝑆𝑅 where Handler(𝑆𝑅) = 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 and
Succ+ is the transitive closure of Succ. By equation (7):

𝐵𝐵𝑠𝑝𝑒𝑐 ∉ 𝐶𝐹𝐺𝑜𝑟𝑖𝑔, �𝑠 ∈ Succ(𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟) | 𝑠 ∉ 𝐶𝐹𝐺𝑜𝑟𝑖𝑔,

=⇒ 𝐵𝐵𝑠𝑝𝑒𝑐 ∉ Succ+ (𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟)
By equation (9):

𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 ≠ 𝐵𝐵𝑠𝑝𝑒𝑐 , 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 ∉ Succ(𝐵𝐵𝑠𝑝𝑒𝑐)
=⇒ ∀𝑢 ∈ Uses(𝑣𝑠𝑝𝑒𝑐), 𝑢 ∉ 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟

=⇒ Uses(𝑣𝑠𝑝𝑒𝑐) ∩ 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 = ∅

By the definition of liveness:
LIVEin [𝑛] = {𝑣 | 𝑢 ∈ Uses(𝑣) ∧ 𝑢 ∈ 𝑛}

∪
((⋃

𝑠∈Succ(𝑛)
LIVEin [𝑠]

)
\ {𝑣 | Def (𝑣) ∈ 𝑛}

)
=⇒ �𝑣 ∈ LIVEin [n] | 𝑣 ∉ Succ+ (𝑛) ∧ Uses(𝑣) ∩ 𝑛 = ∅
=⇒ 𝑣𝑠𝑝𝑒𝑐 ∉ LIVEin [𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟]

For a variable 𝑣 to be dead at the beginning of 𝐵𝐵:
𝑣 ∉ LIVEin [𝐵𝐵]

Therefore, 𝑣𝑠𝑝𝑒𝑐 is dead at the beginning of 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 . □

We next prove that the state of variables at the end of
re-execution matches that of the original execution. This is
done by showing that all 𝜙 instructions inserted in 3 will
take on an equivalent value for all incoming edges.

Theorem 3.2. The state of variables after executing the 𝜙s of
a basic block in 𝐶𝐹𝐺𝑜𝑟𝑖𝑔 is equivalent for all predecessors.

Proof. Given speculative region 𝑆𝑅 with basic block 𝐵𝐵𝑠𝑝𝑒𝑐
where Handler(𝑆𝑅) = 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 and Succ(𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟) =

{𝐵𝐵𝑜𝑟𝑖𝑔}. By equations (3), (6) and (8) and theorem 3.1:
∀𝑣𝑒𝑥𝑡 ∈ 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 , 𝑣𝑒𝑥𝑡 ≡ 𝑣𝑜𝑟𝑖𝑔,

∀𝑣𝜙 ∈ Phis(𝐵𝐵𝑜𝑟𝑖𝑔), 𝑣𝜙 =

{
𝑣𝑒𝑥𝑡 𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟

𝑣𝑜𝑟𝑖𝑔 𝐵𝐵𝑝𝑟𝑒𝑑

where 𝑣 = Extended(𝑣𝑒𝑥𝑡) = Spec(𝑣𝑜𝑟𝑖𝑔)
and Pred(𝐵𝐵𝑜𝑟𝑖𝑔) = {𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟 , 𝐵𝐵𝑝𝑟𝑒𝑑 }
=⇒ ∀𝑣𝜙 ∈ Phis(𝐵𝐵𝑜𝑟𝑖𝑔), 𝑣𝜙 (𝐵𝐵ℎ𝑎𝑛𝑑𝑙𝑒𝑟) ≡ 𝑣𝜙 (𝐵𝐵𝑝𝑟𝑒𝑑)

For the variable state of a basic block following 𝜙 execution
to be equivalent along all predecessors:

∀𝑣𝜙 ∈ Phis(𝐵𝐵), 𝑣𝜙 (𝐵𝐵0) ≡ ... ≡ 𝑣𝜙 (𝐵𝐵𝑛)
where Preds(𝐵𝐵) = {𝐵𝐵0, ..., 𝐵𝐵𝑛}

Therefore, the variable state of 𝐵𝐵𝑜𝑟𝑖𝑔 following 𝜙 execution
is equivalent for all incoming control edges. □

3.2.4 Optimizing with Speculation. With explicit spec-
ulation in SIR, we can enable new optimizations. To explore
this, we use speculation eliminate compare instructions.

Given a compare instruction, that takes a speculative vari-
able 𝑣 and a constant integer 𝑐 as operands, if 𝑐 cannot be
stored in 𝐵𝑊 (𝑣), i.e. 𝑐 ≥ 2𝐵𝑊 (𝑣) , the compare can be op-
timized to rely on the result of speculation on 𝑣 . If 𝑣 does
not misspeculate, then 𝑣 < 2𝐵𝑊 (𝑣) , and the compare can be
replaced by a constant true or false based on the operator.
Because the compare now relies on this speculation result, 𝑣
cannot be removed from the function.

3.3 Back-end

The back-end of the BitSpec compiler is responsible for
generating an assembly program from a SIR program. Regis-
ter allocation accounts for the possibility of misspeculation
within speculative regions. To leverage the capabilities of a
compiler-architecture co-design, the back-end also optimizes
code layout to reduce misspeculation overhead.

7

Figure 7. SMIR exposes possible control flows caused by misspecu-
lation to the register allocator.

3.3.1 Lowering SIR to SMIR is similar to LLVM’s IR to
MIR lowering, but is extended to propagate speculative re-
gions and perform some normalization. Each SIR basic block
(BB) maps to many SMIR machine basic blocks (MBB). Each
MBBmaps to one BB, queried with BasicBlock : 𝑀𝐵𝐵 → 𝐵𝐵.
Speculative regions are propagated such that:

MBB ∈ SR ⇐⇒ BasicBlock(MBB) ∈ SR
Each speculative region is then normalized by splitting its
MBBs such that each contains only a single instruction.

3.3.2 Instruction Selection ensures that speculative in-
structions will be properly monitored by the hardware by
mapping them to speculative operations. For each variable
𝑣 defined in a speculative region, where 𝐵𝑊 (𝑣) < 𝑂 (𝑣), we
map its definition to its speculative operator—which must
exist due to the Squeezable? relation.

3.3.3 Register Allocation maps all virtual registers to
physical registers or slices of physical registers. We use ex-
isting LLVM infrastructure by exposing all slices to LLVM as
subregisters of each 32-bit register. The predecessor relation
of SMIR ensures that this mapping is correct in the case of
misspeculation. Figure 7 shows this, as each MBB within
an SR contains only one instruction, exposing any potential
control flow caused by misspeculation to the register allo-
cator. Finally, we apply a constraint to spilling: each spill
instruction within an SR must be placed at the top of its MBB.
Without this constraint, misspeculation could result in spills
not executing before jumping to the handler.

3.3.4 Code Layout for Efficient Speculation. Next the
CFG is linearized to a sequence of instructions. A naïve lin-
earization incurs heavy performance penalties so we op-
timize code layout—leveraging our compiler-architecture
co-design—to achieve efficient misspeculation handling with
minimal overhead for speculative code. In this design, the
hardware increments the program counter (PC) by a con-
stant Δ when it detects misspeculation. The compiler selects
a value for Δ and creates a code layout guaranteeing that
PC + Δ will cause execution to enter the current speculative
region’s handler, maintaining the SMIR semantics.
To achieve this, the compiler generates skeleton blocks.

For each 𝑀𝐵𝐵 ∈ 𝑆𝑅, the skeleton generator creates a single
machine basic block𝑀𝐵𝐵𝑠𝑘𝑒𝑙 , containing an unconditional
branch to Handler(𝑆𝑅). A constraint is added to CFG lin-
earization, such that, 𝑀𝐵𝐵𝑠𝑘𝑒𝑙 = 𝑀𝐵𝐵 + Δ. We layout all
𝑀𝐵𝐵𝑠𝑝𝑒𝑐 , where BasicBlock(𝑀𝐵𝐵𝑠𝑝𝑒𝑐) ∈ 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 , contigu-
ously and set Δ to the size of that contiguous region.

Instruction Pseudocode Misspec?

Addition 𝐵𝑑 := 𝐵𝑛 + (𝐵𝑚 or 𝑖𝑚𝑚4) Overflow
Subtraction 𝐵𝑑 := 𝐵𝑛 − (𝐵𝑚 or 𝑖𝑚𝑚4) Underflow

Logic 𝐵𝑑 := 𝐵𝑛 op (𝐵𝑚 or 𝑖𝑚𝑚4) Never
Comparison cond(𝐵𝑛 op (𝐵𝑚 or 𝑖𝑚𝑚4)) Never
Spec. Load 𝐵𝑑 := 𝑀𝑒𝑚32 [𝑅𝑛 + (𝐵𝑚 or 𝑖𝑚𝑚8)] BW(load) > 8

Load 𝐵𝑑 := 𝑀𝑒𝑚8 [𝑅𝑛 + (𝐵𝑚 or 𝑖𝑚𝑚8)] Never
Store 𝑀𝑒𝑚8 [𝑅𝑛 + (𝐵𝑚 or 𝑖𝑚𝑚8)] := 𝐵𝑑 Never

Extension 𝑅𝑑 := Sign/ZeroExtend(𝐵𝑛) Never
Spec. Trunc. 𝐵𝑑 := Truncate(𝑅𝑛) BW(𝑅𝑛) > 8
𝑖𝑚𝑚4/8 is a 4/8-bit immediate 𝑅/𝐵𝑖 is a 32/8-bit register (slice)

𝑀𝑒𝑚𝑛 is a 𝑛-bit memory access
Table 1. We implement instructions as detailed in the pseudocode,
which misspeculate under theMisspec? condition.

3.4 ISA Support

We extend the ARMv7 ISA to provide speculative, 8-bit vari-
ants of existing operations, a summary of which is shown in
Table 1. To accommodate our new instructions, we remap
ALU operations with a rotated second operand and copro-
cessor load/stores, effectively removing those instructions.
To support pre-compiled code, we add the ability to en-

able/disable our instruction remapping. When disabled, the
processor runs in classic mode, preserving all ARMv7 instruc-
tions. Before calling a pre-compiled function, the compiler
injects a special assembly instruction which switches to clas-
sic mode. Upon returning from the function, the compiler
injects an assembly instruction to switch to BitSpec mode.

3.5 Microarchitecture

We modify the 𝜇architecture to enable register slice access,
reduced bitwidth ALU operations, and misspeculation detec-
tion. Register slices are supported with modifications to the
register file. In the baseline ARM system only 32-bit access to
general-purpose registers (GPRs) is allowed. We add support
for accessing 8-bit slices of any GPR. This is done by adding
byte-level read/write enable signals and modifying forward-
ing logic to detect dependencies between register slices. Our
chosen platform—a low-power, in-order embedded CPU—
has no register renaming, making this modification simple.
The ALU is segmented into 8-bit slices and operands are
routed to their corresponding ALU slice. ALU logic is ex-
tended to detect misspeculation using carry/overflow signals
at slice boundaries. In the case of misspeculation, the result
is not written to the register file and the PC is incremented
by a 32-bit special register, which holds Δ (§3.3.4).

4 Evaluation

We implemented the BitSpec compiler in the production-
quality LLVM compiler [27]. We utilize a gate-level imple-
mentation of our processor to provide accurate energy re-
sults. We evaluate on workloads from the MiBench [23] suite.

8

Our evaluation answers the following research questions:
RQ0 Does BitSpec reduce energy consumption?
RQ1 Does BitSpec improve register allocation?
RQ2 Is speculation necessary?
RQ3 What is the impact of BitSpec-specific optimizations?
RQ4 Does BitSpec enable more aggressive, conventional

compiler optimizations?
RQ5 What is the impact of aggressive bitwidth selections?
RQ6 Is BitSpec resilient to alternate inputs?
RQ7 Does BitSpec eliminate the need for programmer-

selected bitwidth entirely?
RQ8 Does BitSpec compose with state-of-the-art architec-

ture research for energy savings on tiny devices?
RQ9 How does BitSpec compare to reduced-bitwidth ISAs

in production?

4.1 Experimental Setting

We implement our compiler on LLVM 10.0.0—with NOELLE
abstractions [30]—by adding middle-end passes, extending
the ARM back-end, with no changes to the front-end. We
implement the expander using off-the-shelf tools from the
NOELLE compiler infrastructure. Speculative regions and
their handlers (§3.1.1) are implemented as metadata in LLVM
IR and MIR programs. Our BitSpec compiler does not sup-
port separate compilation, but it does support precompiled
libraries as described in §3.4. We use gllvm to obtain a sin-
gle bitcode file for the program, not including precompiled
libraries, and use this as the input program for our compiler.
We model a 32-bit 6-stage, single-issue, in-order ARMv7

pipeline with 8KiB 4-way instruction and data caches, backed
by a 256KiB L2 cache. We implement this pipeline in RTL Ver-
ilog and synthesize it to a 45nm gate-level implementation
operating at 1.2V using the Synopsys Design Compiler. This
processor has been utilized in prior works to demonstrate en-
ergy reduction techniques in tiny devices [15, 16, 24], which
we build upon. We implement two variants of this processor.
Baseline: the processor as described. BitSpec: the proces-
sor with the BitSpec ISA and 𝜇architecture extensions. We
present metrics relative to Baseline, unless stated otherwise.

We develop a sample-based simulation flow [44] coupling
our gate-level implementation—to accurately track the power
consumption and circuit-level timing—with fast functional
simulation via Gem5 [7]. We simulate the memory hierarchy
with a custom cache model integrated with DRAMSim [29]
to build a detailed, complete system performance model. We
use SimPoints [33] with a 1M instruction interval size.
We evaluate on a subset of the MiBench suite [23], ex-

cluding benchmarks that we could not compile to a whole-
program representation with LLVM. The MiBench suite
showcases fundamental tasks in a variety of embedded do-
mains, closely matching our target domain discussed in §1.

Figure 8. BitSpec reduces energy consumption and energy per in-
struction (EPI), with varying impact on dynamic instructions.

RQ0: Reducing Energy Consumption

We use our gate-level power model and architecture simula-
tor to obtain energy results for each benchmark, shown in
Figure 8. BitSpec reduces energy consumption by 9.9% on
average, with a maximum reduction of 28.2% on rijndael.

To understand the source of energy savings, we measured
the number of dynamic instructions for each benchmark (Fig-
ure 8) and compute the energy per instruction (EPI) from it
(Figure 8). Dynamic instruction reduction illuminates when
eliminating instructions from the program drives our energy
savings. BitSpec has varying impact on dynamic instruc-
tions in our benchmarks. We also look at EPI to investigate
efficiency, where a lower EPI—without increasing dynamic
instructions—implies that we are executing more efficient
instructions. BitSpec reduces the EPI across all benchmarks,
except qsort, showing that we are also producing executa-
bles that more efficiently use the available hardware.

To provide a more granular view, we utilize activity coun-
ters from the architecture simulator to breakdown the energy
consumed by each component. Figure 9 shows the results
for the ALU, register file, data cache (D$), and instruction
cache (I$). Energy consumed by the rest of the processor is
reported as pipeline, primarily caused by stall cycles.
Investigating these results, we see a correlation between

dynamic instruction reduction and I$ energy reduction, es-
pecially for CRC32 and rijndael, as having to fetch fewer
instructions from the cache will directly reduce the amount
of energy used to access the cache. We will contextualize fur-
ther investigation into the factors behind the energy savings
of BitSpec in terms of the aforementioned metrics.

RQ1: Improving Register Allocation

Following up on our discussion in §1 and §2.5, we investigate
the impact of BitSpec on spill instructions. Figure 10 shows
the dynamic loads, stores and copies injected by the register
allocator, normalized to their sum on Baseline.

9

Figure 9. For most benchmarks, BitSpec reduces energy consumption across all components, with a few exceptions.

Figure 10. BitSpec reduces spilling-related loads and stores, sometimes trading off this reduction for an increase in register-register copies.

Figure 11. BitSpec reduces the number of dynamic register accesses, eliminating some and converting others to 8-bit register slice accesses.
All register accesses in Baseline are 32-bits.

For the majority of benchmarks, BitSpec reduces or en-
tirely eliminates spilling-related loads (CRC32 and dijkstra).
This is driven by packing multiple, 8-bit variables into a
single 32-bit register—allowing more live variables to be res-
ident in the register file—reducing the number of variables
that need to be spilled and reloaded. To investigate further,
Figure 11 reports the number of dynamic register accesses at
8- and 32-bits. We see that, for the majority of benchmarks,
the number of dynamic register accesses decreases and the
program makes significant use of 8-bit register slices. Re-
ducing the number of register accesses reduces the energy
consumption of the register file. Furthermore, our gate-level
model reports that 8-bit register slice accesses incur 1/4 the
energy of a 32-bit register access. Because load instructions
must go to, at least, the D$—inducing stalls—removing them
reduces both D$ and pipeline energy consumption.
Aside from storing and loading variables from the stack,

the register allocator manages the placement of variables
within the register file, moving variables from one regis-
ter to another at times. While advanced register allocation
techniques minimize these moves by coalescing [21] when
possible, they cannot be entirely eliminated. In many cases
BitSpec reduces the number of copies, as register slices
grant more degrees of freedom to the allocator. However,
in dijkstra and susan-edges, the register allocator trades
additional copies for reduced loads, a preferable tradeoff as
moves are typically more efficient than loads, improving
EPI. In the case of bitcount, we see that the compiler trades
additional copies for more efficient, 8-bit instructions.

Figure 12. Energy consumption without speculation compared
to BitSpec (lower is better). Without speculation, the system con-
sumes an additional 3.19% energy, on average.

RQ2: Register Packing without Speculation

In §2.2 we identified a significant gap between static analysis
and actual bitwidth requirements, leading us to investigate
speculation. We evaluate the necessity of speculation by
comparing with a variant of BitSpec where the compiler
performs no speculation, with no changes to the ISA or 𝜇arch.
Figure 12 shows that, without speculation, the system

misses out on an additional 3% energy savings, on average.
On CRC32, the system achieves no energy reduction without
speculation. However, we do see the cost of speculation
outweigh the benefits of reduced bitwidth computation on
qsort. In qsort, this is caused by the comparison function
effectively being executed twice upon misspeculation.

RQ3: Impact of Optimizations

We implement two BitSpec-specific optimizations in our
compiler: compare elimination and bitmask elision. We per-
form an ablation study on each optimization in turn.

10

CR
C3

2
FF
T

ba
si
cm

at
h

bi
tc
ou

nt

bl
ow

fis
h

di
jk
st
ra

pa
tr
ic
ia

qs
or
t

rij
nd

ae
l

sh
a

st
rin

gs
ea
rc
h

su
sa
n-
ed
ge
s

su
sa
n-
co
rn
er
s

su
sa
n-
sm

oo
th
in
g

MAX 0 1 0 0 1 0 0 0 1 0 0 3 3 1
AVG 0 1 1 0 1 200 1 0 1 0 0 5 5 1
MIN 1 1 1 1 81710 200 7238 0 3 50745 1 6 6 2

Table 2. The number of misspeculations increases with more ag-
gressive bitwidth selection heuristics.

Compare elimination (§3.2.4) removes compare instruc-
tions based on the result of speculation. Without this opti-
mization, energy consumption of dijkstra increases by 9.5%
due to a 13.1% increase in dynamic instructions.
Bitmask instructions—which extract a subset of the bits

from a variable—can be optimized to operate directly on reg-
ister slices. For example, R2 = and R1 0xFF can be replaced
with a move of the lower 8-bit slice of R1 to R2. This is a very
common pattern for encoding algorithms, such as blowfish
and rijndael. In addition to removing instructions, this en-
ables further use of variables at 8-bits by other speculative
8-bit instructions. Removing this optimization increases the
energy consumption of blowfish and rijndael by 6.3% and
33.4% relative to Baseline, respectively. For rijndael this
large impact is a result of optimizing the hottest loop—where
all uses of a bitmask instruction can be replaced with a reg-
ister slice—reducing dynamic instructions by 26.1%.

RQ4: Aggressive Expansion

In §2.5, we motivated the capabilities of BitSpec to amelio-
rate the drawbacks of aggressively expanding the program
and introduced the expander (§3.2.1) to leverage these oppor-
tunities. To understand its impact, we run all benchmarks
with the expander disabled. Figure 13 shows the results rela-
tive to Baseline with the expander enabled. When disabled,
Baseline sees a ∼10% increase in energy consumption.
While, as discussed in the motivation, we expect to see

the expander push the register allocator past its limits and
cause a performance degradation, we do not see that in our
evaluation. This is due to our autotuning procedure, which
targets Baseline instead of BitSpec. However, we do see that
the expander trades off optimized code for increased register
pressure, which does not result in performance degradation
but does diminish its returns. Looking at Figure 13, we see
that BitSpec reduces the average EPI by 10.36%, but only
6.41% when the expander is disabled. The magnitude of this
difference indicates that BitSpec is able to eliminate loads,
improving the efficiency of instructions. This ameliorates
the register pressure and allows the expander to realize more
of its potential. Thus, we conclude that the benefits of the
expander compound with the benefits of BitSpec and that
their combination is more than the sum of its parts.

RQ5: Aggressive Bitwidth Selection

§3.2.2 introduced multiple bitwidth selection heuristics, i.e.,
𝑀𝐴𝑋 , 𝐴𝑉𝐺 and 𝑀𝐼𝑁 . Figure 14 shows the energy results
for each heuristic. For most benchmarks,𝑀𝐴𝑋 provides the
lowest energy consumption, with the exception of FFT and
patricia where the lowest is 𝐴𝑉𝐺 and𝑀𝐼𝑁 , respectively.
To understand these results, we look at the misspecula-

tion counts in Table 2. More aggressive heuristics tend to
increase the misspeculation count, always correlating with
an increase in energy consumption. This suggests that the
cost of misspeculation outweighs further reducing bitwidth
selection (see Figure 5). We believe this is an artifact of Bit-
Spec’s misspeculation handling, which allows a function
to misspeculate only once per invocation before executing
the remainder at the original bitwidth. So, if you misspec-
ulate early, all benefits of BitSpec are lost. An alternative
that returns to speculative execution would allow aggres-
sive heuristics to balance the risk of misspeculation with the
benefits of further reducing bitwidth.
Seeing the large performance degradation on 𝑀𝐼𝑁 , we

investigate further. For all benchmarks, dynamic instructions
increase above Baseline by up to 48.6%, 12.5% on average.
Knowing that more misspeculations leads to more dynamic
instructions executed in𝐶𝐹𝐺𝑜𝑟𝑖𝑔 , we examined the quality of
generated assembly in 𝐶𝐹𝐺𝑜𝑟𝑖𝑔, finding it to be significantly
worse than Baseline. This is caused by a heuristic used
in the register allocator. We inject artificially low branch
weights for handlers, implying that they will almost never be
entered, to prioritize efficient register allocation in 𝐶𝐹𝐺𝑠𝑝𝑒𝑐 .
We invert this heuristic to imply that handlers will almost
always be entered. With this change, BitSpec incurs only
a 2.6% increase in dynamic instructions over Baseline on
average, ranging from a 9.8% increase to a 0.2% reduction.
This points to poor register allocation in 𝐶𝐹𝐺𝑜𝑟𝑖𝑔—which
sees increased execution due to more misspeculations—as
the main cause for increased energy consumption on𝑀𝐼𝑁 .

RQ6: Sensitivity Study

As a profile-guided technique, it is necessary to examine the
input sensitivity of BitSpec. We use alternate inputs for each
benchmark from random generators provided with MiBench
and well-established inputs from the domain when no gen-
erator is provided. We use the alternate input to profile, then
run the program with the provided input. Figure 15 shows
that BitSpec is robust to alternate inputs for the profiler.

To understand the sensitivity of different selection heuris-
tics, we do a deep dive into susan-edges We use a random
sample of 50 images from BSDS500 [3] to perform the fol-
lowing experiment: For each image 𝑖 ∈ 𝐼 , compile with 𝑖 as
the profile input, producing 𝑝𝑖 . For each image 𝑗 ∈ 𝐼 , run
𝑝𝑖 on 𝑗 , compute its dynamic instructions relative to 𝑝 𝑗 run
on 𝑗 . Repeat the experiment for each selection heuristic, i.e.,
𝑀𝐴𝑋 , 𝐴𝑉𝐺 ,𝑀𝐼𝑁 . Figure 16 shows the experimental results

11

Figure 13.When the expander is disabled, we see that BitSpec does not obtain the same magnitude of energy consumption reduction.

Figure 14.More aggressive bitwidth selection heuristics increase energy consumption, with the exception of patricia and FFT.

Figure 15. BitSpec is robust to changes in the profiler input, main-
taining energy savings with only a 1.14% increase on average.

Figure 16. Cumulative distribution of runs for susan-edges.

as a cumulative distribution. We conclude that𝑀𝐴𝑋 gener-
ates robust benefits between inputs, while 𝐴𝑉𝐺 and 𝑀𝐼𝑁

are more sensitive. This is caused by 𝑀𝐴𝑋 stabilizing at a
shared worst-case, while 𝐴𝑉𝐺 and𝑀𝐼𝑁 are too aggressive
for some image pairs.

RQ7: Fully Automatic Bitwidth Selection

In §2, we identified the gap between programmer-selected
and required bitwidth, begging RQ7. We modify the orig-
inal C code of dijkstra and stringsearch, the only work-
loads where original bitwidth does not impact correctness,
to use 64 bits for all integer variables. If the answer is yes,
we expect to see the same energy consumption from Bit-
Spec on both the modified and unmodifed programs. For
stringsearch, BitSpec consumes 11.81% less energy than
Baseline running on the unmodified program, while Base-
line consumes 16.78% more. For dijkstra, BitSpec con-
sumes 0.43% less energy, while Baseline consumes 26.65%

more. For stringsearch, the answer to RQ7 is yes. How-
ever, for dijkstra energy consumption is only reduced be-
low Baseline for the modified and unmodified programs,
but does not reach parity. Though short of achieving the
promise, BitSpec takes a large step towards the goal.

RQ8: Composition with Other Research Architectures

We now examine the application of BitSpec to dynamic
timing slack (DTS), which has emerged as a promising target
for energy optimization in tiny devices. DTS refers to the
portion of the clock period that remains after all signals have
propagated through logic paths. Prior work [15] can detect
the presence of this slack within a single clock cycle and
scale down the supply voltage to reclaim energy.
As ideas, BitSpec and DTS are orthogonal. We aim to

see if they compose, as they share an application domain.
To do so, we introduce two processors for evaluation. DTS:
an implementation of time squeezing [16], a DTS-optimized
compiler-architecture co-design. DTS+BitSpec: an imple-
mentation of time squeezing, where the compiler and ar-
chitecture were extended with BitSpec. The compiler esti-
mates the available DTS in a sequence of instructions and
provides a clock period hint, which is used to configure a
programmable clock generator—implemented with a multi-
phase ADPLL—which scales the clock per instruction. To
account for changes to the clock period, we scale our energy
results with well-established power [31] and delay [37] equa-
tions. We use RazorII [11] style error detection and recovery.

Figure 17 shows that DTS andDTS+BitSpec reduce energy
consumption by 28.39% and 34.95% on average, respectively.
With Figure 8, these results show that the energy savings of
DTS+BitSpec is roughly the product of DTS and BitSpec
for all benchmarks. Finding that DTS+BitSpec is the sum of

12

Figure 17. BitSpec combined with a DTS-optimized architecture reduces energy consumption by up to 45.8%, 38.8% on average. basicmath
is not included due to a compiler bug in the DTS artifact.

Figure 18. The ARM Thumb architecture requires more dynamic
instructions, limiting its applicability to BitSpec.

its parts, we come to two conclusions. First, compiler-based
DTS estimation techniques are capable of consistent bene-
fits on both speculative and non-speculative code. Second,
these results suggest promising future work in new compiler-
based DTS estimation techniques that account for reduced
bitwidth execution, which induce shorter critical paths (e.g.,
ALU carry chains) for DTS-optimized architectures to ex-
ploit for further energy savings. Such work would enable
DTS+BitSpec to become more than the sum of its parts.

RQ9: Other Architectures in Production

Another line of work that has been deployed in production-
quality, embedded processors is compact ISA design, such as
ARM’s Thumb ISA. In our implementation of BitSpec, we
extended the ARM 32-bit ISA rather than ARM’s compact
Thumb ISA. We did not use Thumb because we found that it
executes more dynamic instructions than Baseline for our
target benchmarks—25.76% on average, up to 73.59%.

5 Related Works and Discussion

Prior work has similarly explored the impact of reduced
bitwidth storage and computation, with various approaches
to bitwidth selection and register allocation techniques.

Software Approaches to Bitwidth Selection use static
analysis to reduce the bitwidth of floating-point [20, 41]
and integer [8, 38, 40] variables. However, as seen in Fig-
ure 1c, production-quality implementations fall short. Fur-
thermore, static analyses will never be able to achieve an
optimal bitwidth selection when bitwidth utilization is input-
dependent, which BitSpec’s profile-guided approach avoids.
Hardware Approaches to Bitwidth Selection reduce

the bitwidth of the entire datapath. Pokam et al. [34] lever-
aged drowsy states [17] in the register file to speculatively
reduce datapath bitwidth per basic block. However, this tech-
nique is limited by its coarse granularity—as evaluated in
Figure 1d—and its blanket treatment of datapath bitwidth,

which precludes it from improving register allocation as Bit-
Spec does. Bhagat et al. [5, 6] used a 16-bit ISA, decomposing
all operations into their 16-bit constituents. With profile-
guided speculation techniques, they elide computation on
16-bit slices. Unlike this approach, BitSpec does not require
drastic changes to the ISA, only requiring small extensions.

Register allocators have been proposed to pack multiple
low-bit variables into a single register [4, 14, 35, 39], but they
do not reduce the bitwidth requirements of program vari-
ables. Other work speculatively allocates two 32-bit variables
into 16-bit slices of a 32-bit register [28]. However, this work
does not allow operations on the upper slice of registers,
inducing costly data movement avoided by BitSpec.
SIMD units have seen steadily increasing vector widths

year after year, with Intel’s AVX-512 [36] supporting vectors
of up to 512 bits. By applying BitSpec to SIMD instructions,
the effective vector width is increased, e.g., speculatively
transforming 8x64 vectors into 64x8 vectors. But this begs the
question: Does speculation on multiple vector elements in-
crease the granularity too much to realize the actual bitwidth
utilization? We leave this for future work.

6 Conclusion

In this paper we proposed BitSpec, a compiler-architecture
co-design to support per-variable, speculative bitwidth selec-
tion, bridging the gap between programmer-specified bitwidth
and the bitwidth required for computation. Our evaluation
shows that BitSpec can drastically increase the optimization
space presented to register allocators, improving the point
of diminishing returns for conventional compiler optimiza-
tions, while composing well with prior work on tiny devices.
As a framework, BitSpec opens the door to new speculative
bitwidth selection techniques, which we believe is key to
lifting the burden of manual bitwidth selection.

Acknowledgments

We would like to thank Michael Threatt, Souradip Ghosh
and Enrico Deiana for their assistance early in the project,
as well as Federico Sossai for his insights on §2.1. We also
thank the anonymous reviewers for insightful comments and
invaluable suggestions. This material is based upon work
supported by the National Science Foundation under NSF-
1908488, NSF-2107042, NSF-2119069, NSF-2148177.

13

References

[1] Frances E. Allen. Control flow analysis. In Symposium on Compiler
Optimization, 1970. doi: 10.1145/800028.808479. URL https://doi.org/
10.1145/800028.808479.

[2] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
Opentuner: An extensible framework for program autotuning. In
Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, PACT ’14, page 303–316, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 9781450328098. doi: 10.1
145/2628071.2628092. URL https://doi.org/10.1145/2628071.2628092.

[3] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
Contour detection and hierarchical image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., pages 898–916, May 2011. doi: 10.1109/TP
AMI.2010.161.

[4] Rajkishore Barik, Christian Grothoff, Rahul Gupta, Vinayaka Pandit,
and Raghavendra Udupa. Optimal bitwise register allocation using
integer linear programming. In George Almási, Călin Caşcaval, and
Peng Wu, editors, Languages and Compilers for Parallel Computing,
pages 267–282, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
ISBN 978-3-540-72521-3.

[5] I. Bhagat, E. Gibert, J. Sanchez, and A. Gonzalez. Eliminating non-
productive memory operations in narrow-bitwidth architectures. In
Workshop on Optimizations for DSP and Embedded Systems, pages 21–
29, Apr 2011.

[6] Indu Bhagat, Enric Gibert, Jesús Sánchez, and Antonio González.
Global productiveness propagation: A code optimization technique
to speculatively prune useless narrow computations. In LCTES, 2011.
doi: 10.1145/1967677.1967700.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.
ISSN 0163-5964. doi: 10.1145/2024716.2024718.

[8] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen Goldstein. Bit-
value inference: Detecting and exploiting narrow bitwidth computa-
tions. In Proceedings from the 6th International Euro-Par Conference
on Parallel Processing, Euro-Par ’00, page 969–979, Berlin, Heidelberg,
2000. Springer-Verlag. ISBN 3540679561.

[9] Jared Casper and Kunle Olukotun. Hardware acceleration of data-
base operations. In Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays, pages 151–160, 2014.

[10] Tung-Chien Chen, Chung-Jr Lian, and Liang-Gee Chen. Hardware
architecture design of an h. 264/avc video codec. In Proceedings of
the 2006 Asia and South Pacific Design Automation Conference, pages
750–757, 2006.

[11] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sud-
herssen Kalaiselvan, Kevin Lai, David M Bull, and David T Blaauw.
Razorii: In situ error detection and correction for pvt and ser tolerance.
IEEE Journal of Solid-State Circuits, 44(1):32–48, 2008.

[12] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static
analysis and compiler design for idempotent processing. In PLDI, 2012.
doi: 10.1145/2254064.2254120. URL https://doi.org/10.1145/2254064.22
54120.

[13] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model
compression and hardware acceleration for neural networks: A com-
prehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

[14] Oguz Ergin, Deniz Balkan, Kanad Ghose, and Dmitry Ponomarev. Reg-
ister packing: Exploiting narrow-width operands for reducing register
file pressure. In 37th International Symposium on Microarchitecture
(MICRO-37’04), pages 304–315. IEEE, 2004.

[15] Yuanbo Fan, Tianyu Jia, Jie Gu, Simone Campanoni, and Russ Joseph.
Compiler-guided instruction-level clock scheduling for timing specu-
lative processors. In DAC, 2018. doi: 10.1145/3195970.3196013.

[16] Yuanbo Fan, Simone Campanoni, and Russ Joseph. Time squeezing
for tiny devices. In ISCA, 2019. doi: 10.1145/3307650.3322268.

[17] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and
Trevor Mudge. Drowsy caches: simple techniques for reducing leakage
power. In ISCA, 2002. doi: 10.1145/545214.545232.

[18] LLVM Foundation. Llvm language reference manual — llvm 10 doc-
umentation. https://releases.llvm.org/10.0.0/docs/LangRef.html,
.

[19] LLVM Foundation. Machine ir (mir) format reference manual. https:
//releases.llvm.org/10.0.0/docs/MIRLangRef.html, .

[20] A.A. Gaffar, O.Mencer, andW. Luk. Unifying bit-width optimisation for
fixed-point and floating-point designs. In 12th Annual IEEE Symposium
on Field-Programmable CustomComputingMachines, pages 79–88, 2004.
doi: 10.1109/FCCM.2004.59.

[21] Lal George and Andrew W. Appel. Iterated register coalescing. ACM
Trans. Program. Lang. Syst., 18(3):300–324, may 1996. ISSN 0164-0925.
doi: 10.1145/229542.229546. URL https://doi.org/10.1145/229542.22954
6.

[22] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia,
and Nathan Beckmann. Snafu: An ultra-low-power, energy-minimal
cgra-generation framework and architecture. In ISCA, 2021. doi:
10.1109/ISCA52012.2021.00084.

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop, WWC ’01, pages
3–14, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-
7803-7315-4. doi: 10.1109/WWC.2001.15. URL https://doi.org/10.1109/
WWC.2001.15.

[24] T. Jia, R. Joseph, and Jie Gu. Greybox design methodology: A program
driven hardware co-optimization with ultra-dynamic clock manage-
ment. In 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2017. doi: 10.1145/3061639.3062255.

[25] Richard Johnson, David Pearson, and Keshav Pingali. The program
structure tree: computing control regions in linear time. In PLDI, 1994.
doi: 10.1145/178243.178258. URL https://doi.org/10.1145/178243.17825
8.

[26] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David M. Brooks.
Mallacc: Accelerating memory allocation. In Yunji Chen, Olivier
Temam, and John Carter, editors, Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April
8-12, 2017, pages 33–45. ACM, 2017. doi: 10.1145/3037697.3037736.
URL https://doi.org/10.1145/3037697.3037736.

[27] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[28] Bengu Li, Youtao Zhang, and Rajiv Gupta. Speculative subword register
allocation in embedded processors. In Languages and Compilers for
High Performance Computing, 2005. doi: 10.1007/11532378_6.

[29] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce
Jacob. Dramsim3: A cycle-accurate, thermal-capable dram simulator.
IEEE Comput. Archit. Lett., 19(2):106–109, jul 2020. doi: 10.1109/LCA.
2020.2973991.

[30] Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip
Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,
Brian Homerding, Tommy McMichen, David I. August, and Simone
Campanoni. Noelle offers empowering llvm extensions. In CGO, 2022.
doi: 10.1109/CGO53902.2022.9741276.

[31] Trevor Mudge. Power: A first-class architectural design constraint.
Computer, 34(4):52–58, 2001.

[32] Tony Nowatzki, Vinay Gangadhar, Karthikeyan Sankaralingam, and
Greg Wright. Domain specialization is generally unnecessary for

14

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2254064.2254120
https://doi.org/10.1145/2254064.2254120
https://releases.llvm.org/10.0.0/docs/LangRef.html
https://releases.llvm.org/10.0.0/docs/MIRLangRef.html
https://releases.llvm.org/10.0.0/docs/MIRLangRef.html
https://doi.org/10.1145/229542.229546
https://doi.org/10.1145/229542.229546
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1109/WWC.2001.15
https://doi.org/10.1145/178243.178258
https://doi.org/10.1145/178243.178258
https://doi.org/10.1145/3037697.3037736

accelerators. IEEE Micro, 2017. URL https://doi.org/10.1109/MM.2017.
60.

[33] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy
Sherwood, and Brad Calder. Using simpoint for accurate and ef-
ficient simulation. SIGMETRICS Perform. Eval. Rev., 31(1):318–319,
June 2003. ISSN 0163-5999. doi: 10.1145/885651.781076. URL
http://doi.acm.org/10.1145/885651.781076.

[34] Gilles Pokam, Olivier Rochecouste, André Seznec, and François Bodin.
Speculative software management of datapath-width for energy opti-
mization. In LCTES, 2004. doi: 10.1145/997163.997175.

[35] Fernando Magno Quintão Pereira and Jens Palsberg. Register alloca-
tion by puzzle solving. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
216–226, 2008.

[36] Chris MacNamara Ray Kinsella and Georgii Tkachuk. Intel AVX-512 -
Instruction Set for Packet Processing. Intel, 2021.

[37] Takayasu Sakurai and A Richard Newton. Alpha-power law mosfet
model and its applications to cmos inverter delay and other formulas.
IEEE Journal of solid-state circuits, 25(2):584–594, 1990.

[38] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bidwidth
analysis with application to silicon compilation. In PLDI, 2000. URL
https://doi.org/10.1145/349299.349317.

[39] Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register
allocation. In Proceedings of the 30th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’03, page
85–96, New York, NY, USA, 2003. Association for Computing Ma-
chinery. ISBN 1581136285. doi: 10.1145/604131.604139. URL
https://doi.org/10.1145/604131.604139.

[40] Jubi Taneja, Zhengyang Liu, and John Regehr. Testing static analyses
for precision and soundness. In CGO, 2020. URL https://dl.acm.org/d
oi/10.1145/3368826.3377927.

[41] J.Y.F. Tong, D. Nagle, and R.A. Rutenbar. Reducing power by optimizing
the necessary precision/range of floating-point arithmetic. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 8(3):273–286,
2000. doi: 10.1109/92.845894.

[42] Shlomo Weiss and James E Smith. A study of scalar compilation
techniques for pipelined supercomputers. ACM SIGARCH Computer
Architecture News, 15(5):105–109, 1987.

[43] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah,
and Tony Nowatzki. Dsagen: Synthesizing programmable spatial
accelerators. In ISCA, 2020. doi: https://doi.org/10.1109/ISCA45697.20
20.00032.

[44] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C
Hoe. Smarts: Accelerating microarchitecture simulation via rigorous
statistical sampling. In ISCA, 2003. doi: 10.1109/ISCA.2003.1206991.

15

https://doi.org/10.1109/MM.2017.60
https://doi.org/10.1109/MM.2017.60
http://doi.acm.org/10.1145/885651.781076
https://doi.org/10.1145/349299.349317
https://doi.org/10.1145/604131.604139
https://dl.acm.org/doi/10.1145/3368826.3377927
https://dl.acm.org/doi/10.1145/3368826.3377927

A Artifact Appendix

A.1 Abstract

Our artifact includes source files for the BitSpec project,
including the compiler, functional simulator, gate-level simu-
lator and energy model described and evaluated in the paper.

A.2 Artifact Check-List (Meta-Information)

• Algorithm: N/A

• Program: MiBench benchmark suite (source included)

• Compilation: LLVM10, GCC

• Transformations: Compiler passes (included)

• Data set: MiBench benchmark suite (included)

• Run-time environment: Linux

• Hardware: Tested on an x64 machine.

• Metrics: Dynamic instructions, Energy consumption

• Output: Text files

• Experiments: Performance and Compiler Evaluation

• How much disk space required (approximately)?: Gen-

erated artifact is 30 GiB

• How much time is needed to prepare workflow (ap-

proximately)?: 4 hours

• How much time is needed to complete experiments

(approximately)?: 2 hours (functional simulation only),

>24 hours (gate-level energy)

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License

• Workflow framework used?: See Appendix A.7.

• Archived?: https://doi.org/10.5281/zenodo.14776342

A.3 Description

A.3.1 HowDelivered. The artifact is available on Zenodo,
at https://zenodo.org/records/14776342.

A.3.2 Hardware Dependencies. Tested on Intel x64 ma-
chine.

A.3.3 Software Dependencies. Dependencies installed
with Docker, tested using Podman 3.4.4.

A.4 Installation

Download and unpack the artifact tarball from the public
repository. Run the following commands from within the
installed artifact directory:

docker build -t asplos25-artifact -f Dockerfile .

docker run -it asplos25-artifact

After installation, run make to build the system.

A.5 Experiment Workflow

Experiments can be run from the automation directory with:
./scripts/run.sh <CONFIG_FILE> <LABEL> <DELTA>

CONFIG_FILE is a YAML file that specifies how to run the
experiment. To run BitSpec with the𝑀𝐴𝑋 heuristic on all
benchmarks use ./configs/mibench/2cfgmax.yml. To run all
benchmarks with the baseline system use ./configs/mibench
/baseline.yml. The DELTA value is used to compile and run
BitSpec programs, as described in §3.3.4, the default value

4000 works for MiBench programs. Larger programs may
need you to specify a larger DELTA value. More information
about customizing experiments is available in Appendix A.7.

A.6 Evaluation and Expected Results

As the output of the experiment flow, the output/ directory
will be populated with each experiments results. Energy
consumption results are reported in output/<EXPERIMENT>/

output/energy.csv. Dynamic instruction counts are reported
in output/<EXPERIMENT>/output/stats.txt as sim_insts.

A.7 Experiment Customization

Experiments are configured with a YAML file in automation

/configs. This allows you to select the architecture, bench-
mark, inputs, compiler and compiler heuristic. The following
example is the configuration used to run the CRC32 bench-
mark with BitSpec using the𝑀𝐴𝑋 heuristic:� �

CRC32_MAX:
arch: bitspec
voltage -scaling: nominal
isa: ARM_BS_MISSPEC
benchmark: crc32
arguments: large.pcm
compiler: bitwidth_speculation
middle -end: 2cfg -max� �

Each configuration can be customized as follows. The
benchmark can be selected with benchmark: <NAME> using
its directory name in benchmark/mibench/<NAME>. The test
and train inputs are set with arguments: ... and train-

arguments:
The architecture can be selected between a baseline ARM

processor and the BitSpec processor:
arch: {baseline, bitspec}

Invoke the compiler for either the baseline ARM ISA or the
modified BitSpec ISA:

isa: {ARM, ARM_BS_MISSPEC}

Set baseline (baseline_10), DTS (time_squeezer_10), Bit-
Spec (bitwidth_speculation) or BitSpec+DTS (bw_with_ts)
compiler with compiler: <COMPILER>. If using a DTS com-
piler, set voltage-scaling: timesqueezing. If using a Bit-
Spec compiler, select the bitwidth selection heuristic:

middle-end: {none,2cfg-{max,avg,min}}

The expander can be enabled/disabled:
expander: {true, false}

The automation/configs directory has preset configurations.

A.8 Methodology

Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-
review-badging

16

https://doi.org/10.5281/zenodo.14776342
https://zenodo.org/records/14776342
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Bitwidth Selection
	2.1 The Bitwidth Selection Problem
	2.2 Bitwidth Selection with Static Analysis
	2.3 Speculative Bitwidth Selection
	2.4 Our Approach
	2.5 How Does Bitwidth Selection Impact Efficiency?

	3 BitSpec: Speculative Bitwidth Selection
	3.1 Representing Speculation in the Compiler
	3.2 Speculatively Reducing the Bitwidth of Variables
	3.3 Back-end
	3.4 ISA Support
	3.5 Microarchitecture

	4 Evaluation
	4.1 Experimental Setting

	5 Related Works and Discussion
	6 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Methodology

